An update on effective Chabauty

Jan Tuitman

KU Leuven

November 3, 2017
Rational points

X/\mathbb{Q} a smooth projective curve of genus $g > 1$.

Given by (singular) plane model $f(x, y) = 0$.

$X(\mathbb{Q})$ is finite by Faltings’s theorem.

Usually points are easily found by a search (if they exist).

Example ($g = 4$)

$$f(x, y) = y^3 - (x^5 - 2x^4 - 2x^3 - 2x^2 - 3x)$$

$$X(\mathbb{Q}) \supset \{(1, -2), (0, 0), (-1, 0), (3, 0), \infty\}$$

Problem

How to prove that these are all points?
Let:
- \(p \) a prime of good reduction,
- \(P, Q \in X(\mathbb{Q}_p) \),
- \(\omega \in H^0(X_{\mathbb{Q}_p}, \Omega^1) \).

In the 80's Coleman defined path independent line integrals

\[
\int_P^Q \omega
\]

which can be extended to integrate over \(D \in J(\mathbb{Q}_p) \), where \(J \) is the Jacobian of \(X \) (above: \(D = (Q) - (P) \)).
Assume at least one point \(b \in X(\mathbb{Q}) \) is known and embed \(X \hookrightarrow J \) by \(P \mapsto (P) - (b) \).

Theorem (Chabauty-Coleman)

Let \(r \) denote the Mordell-Weil rank of \(J \) and suppose that \(r < g \). Then there exists \(\omega \in H^0(X_{\mathbb{Q}_p}, \Omega^1) \) such that \(\int_b^P \omega = 0 \) for all \(P \in X(\mathbb{Q}) \).

Sketch of proof.

\[
\begin{array}{ccc}
X(\mathbb{Q}) & \xrightarrow{\phantom{J(\mathbb{Q}) \to J(\mathbb{Q})}} & X(\mathbb{Q}_p) \\
\downarrow & & \downarrow \\
J(\mathbb{Q}) & \xrightarrow{\phantom{J(\mathbb{Q}) \to J(\mathbb{Q})}} & J(\mathbb{Q}_p) \\
& & _A J_b \\
& & D \mapsto \int_D \\
& & H^0(X_{\mathbb{Q}_p}, \Omega^1)^* \\
\end{array}
\]

\(X(\mathbb{Q}) \) lands in a subspace of \(H^0(X_{\mathbb{Q}_p}, \Omega^1)^* \) of dimension at most \(r \). \(\square \)
Effective Chabauty

A residue disk on X_{Q_p} is the inverse image under reduction mod p of a single point.

The integral $\int_b^P \omega$ can be expanded in a power series with a finite number of zeros on every residue disk.

This proves Mordell’s conjecture in the case $r < g$ as already noted by Chabauty.

Since Coleman integrals can (in principle) be computed, this gives an algorithm to find a finite subset

$$X(Q_p)_1 \subset X(Q_p)$$

which contains $X(Q)$.
Tiny integrals

Let: $P, Q \in X(\mathbb{Q}_p)$ points in the same residue disk, $\omega \in H^0(X_{\mathbb{Q}_p}, \Omega^1)$.

Then $\int_P^Q \omega$ can be computed by expanding ω in a local coordinate t on the disk:

$$\omega = \sum_{i \geq 0} c_i t^i dt$$

and integrating as usual

$$\int_{t(P)}^{t(Q)} \sum_{i \geq 0} c_i t^i dt = \sum_{i \geq 0} \frac{c_i}{i+1} (t(Q)^{i+1} - t(P)^{i+1}).$$

When P and Q not in the same residue disk, does not work: series do not converge.

Analytic continuation fails over \mathbb{Q}_p. Coleman: use Frobenius action on p-adic cohomology.
p-adic cohomology

Can construct p-adic cohomology space $H^1_{rig}(X_{Q_p})$:
- a vector space over Q_p isomorphic to $H^1_{dR}(X_{Q_p})$,
- with action F^*_p of p-th power Frobenius F_p on X_{F_p}.

Let $\omega_1, \ldots, \omega_{2g} \in \Omega^1(X_{Q_p})$ form a basis for $H^1_{dR}(X_{Q_p})$.

Then there exist:
- a matrix $\Phi \in M_{2g \times 2g}(Q_p)$,
- (overconvergent) functions f_1, \ldots, f_{2g} on some open of X_{Q_p}, such that

$$F^*_p(\omega_i) = df_i + \sum_{j=1}^{2g} \Phi_{ij} \omega_j \quad \text{for } i = 1, \ldots, 2g.$$

We can take $\omega_1, \ldots, \omega_g$ to be a basis for $H^0(X_{Q_p}, \Omega^1)$.

General integrals

Recall that

$$F_p^*(\omega_i) = df_i + \sum_{j=1}^{2g} \Phi_{ij} \omega_j$$

for $i = 1, \ldots, 2g$.

Assume that $F_p(P) = P$ and $F_p(Q) = Q$ (Teichmüller points). No loss of generality, can correct with tiny integrals. Integrating, we find

$$\int_P^Q \omega_i = \int_{F_p(P)}^{F_p(Q)} \omega_i = \int_P^Q F_p^*(\omega_i) = f_i(Q) - f_i(P) + \sum_j \Phi_{ij} \int_P^Q \omega_j.$$

So we can determine the $\int_P^Q \omega_i$ by solving the linear system

$$(\Phi - I) \int_P^Q \omega_i = f_i(P) - f_i(Q)$$

for $i = 1, \ldots, 2g$.
We have developed and implemented (in Magma) an algorithm to compute the action F_p^* on $H_{rig}(X_{Q_p})$ for any X for almost all p. The application we had in mind was computing the zeta function $Z(X_{F_p}, T)$.

The package is called pcc and can be found on our website and GitHub. It comes with Magma since v2.23, the commands are: $ZetaFunction$ and $LPolynomial$.

In joint work with Balakrishnan we have extended this to an algorithm and implementation for computing (single) Coleman integrals on arbitrary curves.

The package is called $Coleman$ and can again be found on our website and GitHub.
Explicit effective Chabauty

1. Suppose an upper bound $R < g$ is known on the rank r of J.
2. Take as input points $P_1, \ldots, P_k \in X(Q)$.
3. Determine the subspace S of $\omega \in H^0(X_{Q_p}, \Omega^1)$ such that
 \[\int_{P_1}^{P_i} \omega = 0 \quad \text{for } i = 1, \ldots, k. \]
4. If $\dim S \leq g - R$ then for all $\omega \in S$ and $P \in X(Q)$
 \[\int_{P_1}^{P} \omega = 0 \quad \text{for } i = 1, \ldots, k. \]
5. Expand these conditions in power series and find the candidate points
 on every residue disk of X_{Q_p}.
Example

Let us return to the example \(f(x, y) = y^3 - (x^5 - 2x^4 - 2x^3 - 2x^2 - 3x) \). The Magma function \(\text{RankBounds()} \) proves that the rank of \(J \) is 1. This uses work of Poonen–Schaefer ('97). Now we call:

\[
\begin{align*}
> & \text{load "coleman.m";} \\
> & Q := y^3 - (x^5 - 2x^4 - 2x^3 - 2x^2 - 3x); \\
> & p := 7; \\
> & N := 15; \\
> & \text{data := coleman_data(Q, p, N);} \\
> & \text{Qpoints := Q_points(data, 1000); // PointSearch} \\
> & \text{#vanishing_differentials(Qpoints, data:e:=50);} \\
> & 3 \\
> & \text{#effective_chabauty(data, 1000:e:=50), #Qpoints;} \\
> & 5 5
\end{align*}
\]

This proves that our list of rational points is complete.
Some examples of what can go wrong:

- No upper bound on rank r. Assume some conjectures?
- $(P) - (Q)$ with $P, Q \in X(Q)$ do not generate full rank subgroup of $J(Q)$. Then $\dim S \leq g - R$ is never satisfied. Use more general $D \in J(Q)$? Currently, only points in $X(Q_p)$ allowed.
- Too many points found: $X(Q_p)_1$ strictly larger than $X(Q)$. Use other prime p, combine with Mordell-Weil sieving?
- Rank r known but $r \geq g$. Method as explained so far breaks down. However, recently some success with non-abelian effective Chabauty.

What is non-abelian Chabauty? Let’s see an example.
The cursed curve

Split Cartan modular curve of level 13:

\[X_s(13) = X(13)/C_s(13)^+ \]

where \(C_s(13)^+ \) is the normaliser of a split Cartan subgroup of \(GL_2(F_{13}) \).

Baran '14 found a defining equation, which we can rewrite as

\[f(x, y) = y^4 + 5x^4 - 6x^2y^2 + 6x^3 + 26x^2y + 10xy^2 - 10y^3 - 32x^2 - 40xy + 24y^2 + 32x - 16y. \]

The closure in \(\mathbb{P}_Q^2 \) is a smooth plane quartic, so \(g = 3 \).

Jacobian simple and by known instance of BSD one finds \(r = 3 \).

What about the rational points?
Rational points

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

The rational points on $X_s(13)$ *are the seven known ones (six CM points and one cusp).*

Paper ‘Explicit Chabauty-Kim for the split Cartan modular curve of level 13’ should be on arxiv very soon.

Corollary

There does not exist an elliptic curve E/\mathbb{Q} *without CM such that the image of its mod* ℓ *Galois representation is contained in the normalizer of a split Cartan subgroup of* $GL_2(F_\ell)$ *for* $\ell = 13$.

For all $\ell \neq 13$ it was already known (Bilu-Parent-Rebolledo ’11) whether such elliptic curves exist or not (for $\ell \leq 7$ yes, otherwise no).
Here $D \rightarrow \int_D$ gives an isomorphism

$$J(Q) \otimes Q_p \rightarrow H^1_{\text{rig}}(X_{Q_p})^*.$$

Therefore, we cannot find the global points among the local ones using linear relations in the Abel-Jacobi map.

The idea of Kim’s non-abelian Chabauty program is to refine the Abel-Jacobi map, by replacing linear relations by higher degree ones.

$$X(Q_p) \supset X(Q_p)_1 \supset X(Q_p)_2 \supset \ldots \supset X(Q)$$

In our case it turns out that $X(Q_p)_2 = X(Q)$.
Quadratic Chabauty pairs

Fix $b \in X(\mathbb{Q})$. A quadratic Chabauty pair is

- a function $\theta : X(\mathbb{Q}_p) \to \mathbb{Q}_p$,
- a finite set $\Upsilon \subset \mathbb{Q}_p$,

satisfying the following conditions:

1. On each residue disk, the map

$$ (AJ_b, \theta) : X(\mathbb{Q}_p) \to H^0(X_{\mathbb{Q}_p}, \Omega^1)^* \times \mathbb{Q}_p $$

has Zariski dense image and is given by a power series.

2. There exist

- an endomorphism E of $H^0(X_{\mathbb{Q}_p}, \Omega^1)^*$,
- a functional $c \in H^0(X_{\mathbb{Q}_p}, \Omega^1)^*$,
- a bilinear form $B : H^0(X_{\mathbb{Q}_p}, \Omega^1)^* \otimes H^0(X_{\mathbb{Q}_p}, \Omega^1)^* \to \mathbb{Q}_p$,

such that, for all $x \in X(\mathbb{Q})$:

$$ \theta(x) - B(AJ_b(x), E(AJ_b(x)) + c) \in \Upsilon. $$
Nice correspondences

We will construct θ from a nice correspondence.

Let Z be a correspondence on X, i.e. a divisor on $X \times X$.

We denote:

- τ the involution $(x_1, x_2) \mapsto (x_2, x_1)$ on $X \times X$,
- $\pi_1, \pi_2 : X \times X \to X$ the canonical projections.

Z is symmetric if there exist $Z_1, Z_2 \in \text{Pic}(X)$ such that

$$\tau^*Z = Z + \pi_1^*(Z_1) + \pi_2^*(Z_2).$$

Induces endomorphism ξ_Z of $H^1_{dR}(X)$ and class in $H^1_{dR}(X_{\mathbb{Q}_p}) \otimes H^1_{dR}(X_{\mathbb{Q}_p})$.

Z is nice if nontrivial, symmetric and $\text{Tr}(\xi_Z) = 0$.
Unipotent overconvergent F-isocrystals

Let $Y = X - x^{-1}(\infty)$. Take $\tilde{\omega} = \{\omega_1, \ldots, \omega_6\}$ to be a basis of $H^1_{dR}(X)$.

Put the connection $\nabla = d - \Lambda$ on $\mathcal{A}_{Z,b} = \mathcal{O}_Y \oplus \mathcal{O}_Y^{\oplus 6} \oplus \mathcal{O}_Y$:

$$\Lambda = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{\omega} & 0 & 0 \\ \eta & \tilde{\omega}^t Z & 0 \end{pmatrix}$$

η is determined by: 1) is logarithmic 2) ∇ extends to a holomorphic connection on X.

By a crystalline comparison theorem $\mathcal{A}_{Z,b}$ admits a Frobenius structure, i.e. an isomorphism

$$F : F_p^* \mathcal{A}_{Z,b} \rightarrow \mathcal{A}_{Z,b}$$

horizontal w.r.t ∇, turning $(\mathcal{A}_{Z,b}, \nabla)$ into a unipotent overconvergent F-isocrystal.
Let \tilde{b} be the Teichmüller lift in the residue disk of b (i.e. $F_p(\tilde{b}) = \tilde{b}$).

The matrix of the Frobenius structure F is given by

$$G = \begin{pmatrix} 1 & 0 & 0 \\ \vec{f} & \Phi & 0 \\ h & \vec{g}^t & p \end{pmatrix}$$

where:

$$F_p^* \vec{\omega} = df + \Phi \vec{\omega} \quad f(\tilde{b}) = 0$$

$$d\vec{g}^t = df^t Z \Phi$$

$$dh = \vec{\omega}^t \Phi^t Z \vec{f} + df^t Z \vec{f} - \vec{g}^t \vec{\omega} + F_p^* \eta - p\eta \quad h(\tilde{b}) = 0$$

This can be solved using our algorithms!
Construct θ_Z

For any $x \in X(\mathbb{Q}_p)$ can pull back $A_Z(b)$:

$$A_Z(b, x) = x^*(A_Z(b)).$$

This is a ϕ-module in the sense of p-adic Hodge theory. Note that ϕ is G evaluated at x.

$A_Z(b)$ is an extension and carries a Hodge filtration compatible with ϕ.

For such extensions of filtered ϕ-modules, Nekovar has defined a p-adic height function $h_p()$. We set

$$\theta_Z(x) = h_p(A_Z(b, x)).$$

For any nice correspondence there is a finite set Υ such that (θ, Υ) is a quadratic Chabauty pair (with $E = \xi_Z$).
Some computational details

\[f(x, y) = y^4 + 5x^4 - 6x^2y^2 + 6x^3 + 26x^2y + 10xy^2 - 10y^3 - 32x^2 - 40xy + 24y^2 + 32x - 16y. \]

\[\vec{\omega} := \left(\begin{array}{c} 1 \\ x \\ y \\ -160x^4/3 + 736x^3/3 - 16x^2y/3 + 436x^2/3 - 440xy/3 + 68y^2/3 \\ -80x^3/3 + 44x^2 - 40xy/3 + 68y^2/3 - 32 \\ -16x^2y + 28x^2 + 72xy - 4y^2 - 160x/3 + 272/3 \end{array} \right) dx/(\partial f/\partial y) \]

We use the correspondences \(Z \) with \(\xi_Z = 6a_q - \text{Tr}(a_q)Id \) for \(q = 7, 11 \):

\[
Z_1 = \begin{pmatrix}
0 & 112 & -656 & -6 & 6 & 6 \\
-112 & 0 & -2576 & 15 & 9 & 27 \\
656 & 2576 & 0 & 3 & 3 & -3 \\
6 & -15 & -3 & 0 & 0 & 0 \\
-6 & -9 & -3 & 0 & 0 & 0 \\
-6 & -27 & 3 & 0 & 0 & 0
\end{pmatrix}
\quad Z_2 = \begin{pmatrix}
0 & -976 & -1104 & 10 & -6 & 18 \\
976 & 0 & -816 & -3 & 1 & 3 \\
1104 & 816 & 0 & -3 & 3 & -11 \\
-10 & 3 & 3 & 0 & 0 & 0 \\
6 & -1 & -3 & 0 & 0 & 0 \\
-18 & -3 & 11 & 0 & 0 & 0
\end{pmatrix}
\]