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Introduction

Zeta functions

Suppose that

e F, finite field of cardinality g = p".

e X/F4 a smooth proper algebraic curve of genus g.
Recall that the zeta function of X is defined as

Z(X, T) = exp(Q_IX(Fg)|—)-
i=1
It follows from the Weil conjectures that Z(X, T) is of the form

x(T)
(1-T)(1-qT)

where x(T) € Z[T] of degree 2g, with inverse roots that

@ have absolute value q%
@ are permuted by the map x — 1/(gx).



Introduction

Computing zeta functions

Problem
How to compute Z(X, T) (efficiently)?

Note that this problem has cryptographic applications when X is a
(hyper)elliptic curve.

Let F,, denote the pth power Frobenius map and H;*,-g
cohomology. Then

(X) the rigid

X(T) =det(1 — T F) |H(X)).




Kedlaya's algorithm

Hyperelliptic curves

A hyperelliptic curve X is given by an (affine) equation of the form
y? = Qx),

with Q € F4[x] a monic polynomial of degree 2g + 1 with
ged(Q, Q) = 1.

To define Hj,(X), we start by lifting @ to characteristic 0:

Let Q € Z,[x] denote a monic lift of Q of degree 2g + 1.



Kedlaya's algorithm

Some rings

We define a ring Zq<x,y,y_1>T of overconvergent functions:

o o
0 X syl 23> 1 lim Jaigle’ =0}

-
i=0 j=—o0 +l

Moreover, we denote

R =Zglx,y,y 11/(Q), R'=2Zq4(x,y,y H)1/(Q)

U = SpecR, U=U®Qq, U=U®F,.



Kedlaya's algorithm

Rigid cohomology

We define the overconvergent Kahler differentials

) Rfdx @ Rfdy

R (2ydy — Qdx)
and the overconvergent De Rham complex

d

Q% : 0 R Qri — 0.

We then have

H&g(u) = HY(Q5: ® Qq) = coker(d) ® Qq.



Kedlaya's algorithm

Frobenius lift

The pth power Frobenius map on R ® F, can be lifted to R.

If o € Gal(Qq/Qp) denotes the unique lift of the pth power
Frobenius map on Fg, then

Foy)® = Q7(Fp(x)).
So we define
FP(X) = Xp7

Foly) = Q7(xP)

N

() = AP

—_ P
=y (1—|- y2p

The square root can be computed efficiently by Hensel lifting.



Kedlaya's algorithm

Computing in the cohomology

We can write any 1-form w € Qp; as
o0
a:
>
i=—00 Y

with a; € Zg[x] of degree < 2g + 1 for all i € Z. Writing
B(x) = A1(x)Q(x) + A2(x)Q'(x), we have

B(x)‘;x. = (M) + ff‘i(g) yf’xz.

This allows us to eliminate all terms with i > 2. We can do
something similar for the terms with i < 0.




Kedlaya's algorithm

A basis for the cohomology

As a consequence, one can show that:

Theorem

A basis for H,lig(U) is given by

d d d
XO—X, ... ,ng_l—x,xo—;(, ..
y y y

[

d
.,X2g—)2<]
y

and the first 2g vectors form a basis for the subspace Hrlig(X )-




Kedlaya's algorithm

Kedlaya's algorithm

Roughly:

e Compute F, ( ) and Fp(x ’dX) = pX’.pJ“p_le()l,)dX-

@ Reduce back to the basis [xo%, ... ,ng_l%] and read off the
matrix § of F, on Hrllg(X)

o Compute the matrix F(" = F°" " ...3°F of Fp on Hrl.g(X)

o Determine x(T) = det(1 —F] T| rlg( )

The polynomial x(T) = Z?ﬁo XiT' € Z[T] is determined exactly
if known to high enough p-adic precision, since there are explicit
bounds for the size of its coefficients.



More general curves

More general curves

We let X /F, denote the smooth projective curve given by the
(affine) equation

Qx.y) =y?+ Qu_1(x)y’ ' +...+ Q =0,
where Q(x, y) is irreducible and Q;(x) € F4[x] for all /.

We let Q € Z,[x] denote a lift of Q that is monic of degree d in y.

The zero locus of Q in A%q is smooth over Z,.




More general curves

The Z,[x]-module Z4[x, y]/(Q) is free with basis [L,y,...,y9"!]

Proposition
There exists r(x) # 0 € Z4[x], squarefree in Qq[x|, such that the
element s = r/% of Qq(x,y) is contained in Z4[x, y]/(Q).

| \

A\

r can be taken to divide the resultant A in y of Q and %, hence
can be easily computed. We denote:

S=zfx. ), R =Zylx, . 11/(Q),
St = zq<x,%>t R = Zq<X7%7Y>T/(Q)'

So we invert r instead of y.



More general curves

Frobenius lift

Define sequences (&;)i>0, (8i)i>0, with o € Stand g; € RT, by
the following recursion:

- 1
ap = ﬁv
Bo = yP,
ip1 = ai(2 — air’(xP)) (mod p*"),
Biv1 = Bi — Q7(xP, bi)s” (xP, Bi)ai (mod p?).

Then one easily checks that the o-semilinear ringhomomorphism
Fp: R — RT defined by

1 . .
Fo(x) =5, Fpl() = limai,  Fply) = fim g,

is a Frobenius lift.



More general curves

The connection matrix

We take

U=SpecR, T=URQq, U=URF,,

X /Z4 a smooth proper curve containing U,

and let M € Mgy 4(Z4[x]) denote the matrix for which
s00 &My
d(y') =y~ dy = =y~ 5 cdx ,-E—o( p )y dx,

forall 0 <j < d -1 as 1-forms on U.



More general curves

Some more assumptions

It is necessary to assume:

@ The zero locus of r on A%q is smooth over Z, and does not
contain 0.

@ The zero locus of r on A%q N X is smooth over Z.

@ The ramification indices ep at all points P € X \ U are not
divisible by p.

To simplify the exposition, we also assume:

deg(M) < deg(r).




More general curves

Effective convergence bounds

Let N € N. Then modulo p":
@ F,(1/r) is congruent to Zf’i’p @ where for all p < i < pN

the polynomial p; € Z4[x] satisfies deg(p;) < deg(r).
@ F,(y') is congruent to Z;'j:_ol i j(x)y!, where

p(N—1)+1
i j.k(x)
bij = Z *Irikv
k=0
forall0 <i,j <d—1and ¢jji € Zq4[x] satisfies

deg(¢ijo0) < p(d — 1)(—p) and deg(o;j«) < deg(r), for all
0<ij<d—-1land1l<k<p(N—1)+1.




More general curves

Computing in the cohomology |

Proposition

For all £ € N and every vector u € Qq[x]®9, there exist (unique)
vectors v, w € Qq[x]®9 with deg(v) < deg(r), such that

d—1 i d—1 i
o uy! o _ y(Zio 'y | Yo w' o
rt r K el r

as 1-forms on U.

Sketch of the proof: r is separable, so r’ is invertible in Qq[x]/(r). v has to satisfy (rM, - ZI)V = ri, (mod r)

over Qq[x]/(r). We show that the finite exponents of (M/r)dx are contained in [0, 1), hence det(¢/ — M/r’) is

invertible in Qq[x]/(r), so there is a unique solution v.



More general curves

Computing in the cohomology |l

Proposition

For every vector u € Qq[x]®9 with deg(u) > deg(r), there exist
vectors v, w € Qq[x]®9 with deg(w) < deg(u), such that

d—1 ke d—1
(Z UiY')T = d(z viy') + (Z wiy
i=0 i=0

as 1-forms on U.

Sketch of the proof: We denote t = 1/x. Since deg(M) < deg(r), we can expand
M

%dx = ( t_l . .)dt, where M; € Mgy 4(Qq) for all i. Similarly, if k = deg(u) — deg(r) + 2, then we

by, b_(k—1)

can write (27:701 u;y”)% = (T + tk—71 +.. )dt, where b; € (Qq)®d for all i. We show that the

infinite exponents of (M/r)dx are < 0, so the linear system (M_j — (k — 1)/)c = b_ has a unique solution

c € (Qq)®?. We now take v = cxk"Tand w = u — (Mv + r%).



More general curves

Precision loss |

Let w € Qzll be of the form

Z _0 W:(X)y dX

w =
rt r

where ¢ € N and w; € Z,[x] satisfies deg(w;) < deg(r) for all
0<i<d-—1. We definee=max{ep|P € X \U,x(P)# cc}. If
we represent the class of w in Hrllg(U) as in the Theorem using the
Proposition, then

pteesfell y;(x) e Z,[x]

forall0<i<d-1.




More general curves

Precision loss I

Let w € QZ{, be of the form

d—1 dx
w= (Y wib)y)
i=0
where w; € Z4[x] for all 0 < i < d —1 and deg(w;) > deg(r) for
some 0 < j<d—1. We define m = (deg(w) — deg(r) +1). If we
represent the class of w in H}ig(U) as in the Theorem using the
Proposition, then
ploss (Ml u(x) € Zq1x]

forall0 <i<d-—1.




More general curves

A basis for the cohomology

First, let E denote the Qg-vector space of 1-forms

where uj € Qq[x] satisfies deg(u;) < deg(r) forall 0 </ <d—1.
Now, let E; denote the kernel of the map that sends w € E to the
element % 27:_01 uiy' of Qq[x,y]/(Q,r). FinaIIy,'Iet E> denote
the subspace of E; generated by the elements d(y’) for all
0<i<d-1.

We have isomorphisms:

H,l,-g(U) ~ E/E, H,l,-g(x — xYo0)) = E/E.




More general curves

Final remarks

@ This allows us to compute Z(X — x1(c0), T), from which
Z(X, T) can be easily obtained.

@ The assumption deg(M) < deg(r) can be removed by
temporarily using a basis for the Z4[x]-module Z4[x, y]/(Q)
with respect to which it is satisfied, when carrying out the
reductions at co in the cohomology.

@ The assumption that Q = 0 is smooth over Z, can probably
be removed if we know a basis for the integral closure of
Z,[x] in the function field Qq(x, y).

@ The way we compute in the cohomology is taken from work of
Lauder (and his student Walker) on the fibration method.

Alan G.B. Lauder, " A recursive method for computing zeta
functions of varieties”
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