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Zeta functions

Suppose that

Fq finite field of cardinality q = pn.

X/Fq a smooth proper algebraic curve of genus g .

Recall that the zeta function of X is defined as

Z (X ,T ) = exp(
∞∑
i=1

|X (Fqi )|
T i

i
).

It follows from the Weil conjectures that Z (X ,T ) is of the form

χ(T )

(1− T )(1− qT )
,

where χ(T ) ∈ Z[T ] of degree 2g , with inverse roots that

have absolute value q
1
2

are permuted by the map x → 1/(qx).
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Computing zeta functions

Problem

How to compute Z (X ,T ) (efficiently)?

Note that this problem has cryptographic applications when X is a
(hyper)elliptic curve.

Theorem

Let Fp denote the pth power Frobenius map and H∗rig(X ) the rigid
cohomology. Then

χ(T ) = det(1− T Fn
p |H1

rig(X )).
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Hyperelliptic curves

A hyperelliptic curve X is given by an (affine) equation of the form

y 2 = Q(x),

with Q ∈ Fq[x ] a monic polynomial of degree 2g + 1 with
gcd(Q,Q ′) = 1.

To define H1
rig(X ), we start by lifting Q to characteristic 0:

Let Q ∈ Zq[x ] denote a monic lift of Q of degree 2g + 1.
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Some rings

We define a ring Zq〈x , y , y−1〉† of overconvergent functions:

{
∞∑
i=0

∞∑
j=−∞

ai ,jx
iy j |ai ,j ∈ Zq,∃ρ > 1: lim

i+|j |→∞
|ai ,j |ρi = 0}.

Moreover, we denote

R = Zq[x , y , y−1]/(Q), R† = Zq〈x , y , y−1〉†/(Q)

U = SpecR, U = U ⊗Qq, U = U ⊗ Fq.
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Rigid cohomology

We define the overconvergent Kähler differentials

Ω1
R† =

R†dx ⊕ R†dy

(2ydy −Q′dx)

and the overconvergent De Rham complex

Ω•R† : 0 −−−−→ R† d−−−−→ ΩR† −−−−→ 0.

We then have

H1
rig(U) = H1(Ω•R† ⊗Qq) = coker(d)⊗Qq.
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Frobenius lift

The pth power Frobenius map on R⊗ Fq can be lifted to R.

If σ ∈ Gal(Qq/Qp) denotes the unique lift of the pth power
Frobenius map on Fq, then

Fp(y)2 = Qσ(Fp(x)).

So we define

Fp(x) = xp,

Fp(y) = Qσ(xp)
1
2 = yp

(
1 +
Qσ(xp)−Q(x)p

y 2p

) 1
2
.

The square root can be computed efficiently by Hensel lifting.



Introduction Kedlaya’s algorithm More general curves

Computing in the cohomology

We can write any 1-form ω ∈ ΩR† as

∞∑
i=−∞

ai (x)

y i
dx ,

with ai ∈ Zq[x ] of degree < 2g + 1 for all i ∈ Z. Writing
B(x) = A1(x)Q(x) + A2(x)Q ′(x), we have

B(x)
dx

y i
≡
(

A1(x) +
2A′2(x)

(i − 2)

) dx

y i−2
.

This allows us to eliminate all terms with i > 2. We can do
something similar for the terms with i ≤ 0.



Introduction Kedlaya’s algorithm More general curves

A basis for the cohomology

As a consequence, one can show that:

Theorem

A basis for H1
rig(U) is given by

[x0 dx

y
, . . . , x2g−1 dx

y
, x0 dx

y 2
, . . . , x2g dx

y 2
]

and the first 2g vectors form a basis for the subspace H1
rig(X ).
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Kedlaya’s algorithm

Roughly:

Compute Fp( 1
y ) and Fp(x i dx

y ) = px ip+p−1Fp( 1
y )dx .

Reduce back to the basis [x0 dx
y , . . . , x

2g−1 dx
y ] and read off the

matrix F of Fp on H1
rig(X ).

Compute the matrix F(n) = Fσ
n−1

. . .FσF of Fn
p on H1

rig(X ).

Determine χ(T ) = det(1− Fn
p T |H1

rig(X )).

The polynomial χ(T ) =
∑2g

i=0 χiT
i ∈ Z[T ] is determined exactly

if known to high enough p-adic precision, since there are explicit
bounds for the size of its coefficients.
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More general curves

We let X/Fq denote the smooth projective curve given by the
(affine) equation

Q(x , y) = yd + Qd−1(x)yd−1 + . . .+ Q0 = 0,

where Q(x , y) is irreducible and Qi (x) ∈ Fq[x ] for all i .

We let Q ∈ Zq[x ] denote a lift of Q that is monic of degree d in y .

Assumption

The zero locus of Q in A2
Zq

is smooth over Zq.
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Proposition

The Zq[x ]-module Zq[x , y ]/(Q) is free with basis [1, y , . . . , yd−1].

Proposition

There exists r(x) 6= 0 ∈ Zq[x ], squarefree in Qq[x ], such that the
element s = r/∂Q∂y of Qq(x , y) is contained in Zq[x , y ]/(Q).

r can be taken to divide the resultant ∆ in y of Q and ∂Q
∂y , hence

can be easily computed. We denote:

S = Zq[x ,
1

r
], R = Zq[x ,

1

r
, y ]/(Q),

S† = Zq〈x ,
1

r
〉†, R† = Zq〈x ,

1

r
, y〉†/(Q).

So we invert r instead of y .
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Frobenius lift

Define sequences (αi )i≥0, (βi )i≥0, with αi ∈ S† and βi ∈ R†, by
the following recursion:

α0 =
1

rp
,

β0 = yp,

αi+1 = αi (2− αi r
σ(xp)) (mod p2i+1

),

βi+1 = βi −Qσ(xp, bi )sσ(xp, βi )αi (mod p2i+1
).

Then one easily checks that the σ-semilinear ringhomomorphism
Fp : R† → R† defined by

Fp(x) = xp, Fp(
1

r
) = lim

i→∞
αi , Fp(y) = lim

i→∞
βi ,

is a Frobenius lift.
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The connection matrix

We take

U = SpecR, U = U ⊗Qq, U = U ⊗ Fq,

X/Zq a smooth proper curve containing U ,

and let M ∈ Md×d(Zq[x ]) denote the matrix for which

d(y j) = jy j−1dy = −jy j−1 s

r

∂Q
∂x

dx =
d−1∑
i=0

(Mij

r

)
y idx ,

for all 0 ≤ j ≤ d − 1 as 1-forms on U .
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Some more assumptions

It is necessary to assume:

Assumption

The zero locus of r on A1
Zq

is smooth over Zq and does not
contain 0.

The zero locus of r on A2
Zq
∩ X is smooth over Zq.

The ramification indices eP at all points P ∈ X \ U are not
divisible by p.

To simplify the exposition, we also assume:

Assumption

deg(M) < deg(r).
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Effective convergence bounds

Proposition

Let N ∈ N. Then modulo pN :

1 Fp(1/r) is congruent to
∑pN

i=p
ρi (x)
r i

, where for all p ≤ i ≤ pN
the polynomial ρi ∈ Zq[x ] satisfies deg(ρi ) < deg(r).

2 Fp(y i ) is congruent to
∑d−1

j=0 φi ,j(x)y j , where

φi ,j =

p(N−1)+1∑
k=0

φi ,j ,k(x)

rk
,

for all 0 ≤ i , j ≤ d − 1 and φi ,j ,k ∈ Zq[x ] satisfies
deg(φi ,j ,0) < p(d − 1)(−µ) and deg(φi ,j ,k) < deg(r), for all
0 ≤ i , j ≤ d − 1 and 1 ≤ k ≤ p(N − 1) + 1.
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Computing in the cohomology I

Proposition

For all ` ∈ N and every vector u ∈ Qq[x ]⊕d , there exist (unique)
vectors v ,w ∈ Qq[x ]⊕d with deg(v) < deg(r), such that∑d−1

i=0 uiy
i

r `
dx

r
= d

(∑d−1
i=0 viy

i

r `

)
+

∑d−1
i=0 wiy

i

r `−1

dx

r

as 1-forms on U.

Sketch of the proof: r is separable, so r′ is invertible in Qq [x]/(r). v has to satisfy
(

M
r′ − `I

)
v ≡ u

r′ (mod r)

over Qq [x]/(r). We show that the finite exponents of (M/r)dx are contained in [0, 1), hence det(`I − M/r′) is

invertible in Qq [x]/(r), so there is a unique solution v .
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Computing in the cohomology II

Proposition

For every vector u ∈ Qq[x ]⊕d with deg(u) ≥ deg(r), there exist
vectors v ,w ∈ Qq[x ]⊕d with deg(w) < deg(u), such that

(
d−1∑
i=0

uiy
i )

dx

r
= d(

d−1∑
i=0

viy
i ) + (

d−1∑
i=0

wiy
i )

dx

r

as 1-forms on U.

Sketch of the proof: We denote t = 1/x . Since deg(M) < deg(r), we can expand

M
r
dx =

(M−1
t

+ M0 + . . .
)
dt, where Mi ∈ Md×d (Qq) for all i . Similarly, if k = deg(u)− deg(r) + 2, then we

can write (
∑d−1

i=0 ui y
i ) dx

r
=
( b−k

tk
+

b−(k−1)

tk−1 + . . .
)
dt, where bi ∈ (Qq)⊕d for all i . We show that the

infinite exponents of (M/r)dx are ≤ 0, so the linear system (M−1 − (k − 1)I )c = b−k has a unique solution

c ∈ (Qq)⊕d . We now take v = cxk−1 and w = u − (Mv + r dv
dx

).
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Precision loss I

Proposition

Let ω ∈ Ω1
U be of the form

ω =

∑d−1
i=0 wi (x)y i

r `
dx

r
,

where ` ∈ N and wi ∈ Zq[x ] satisfies deg(wi ) < deg(r) for all
0 ≤ i ≤ d − 1. We define e = max{eP |P ∈ X \ U , x(P) 6=∞}. If
we represent the class of ω in H1

rig(U) as in the Theorem using the
Proposition, then

pblogp(`e)cui (x) ∈ Zq[x ]

for all 0 ≤ i ≤ d − 1.
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Precision loss II

Proposition

Let ω ∈ Ω1
U be of the form

ω = (
d−1∑
i=0

wi (x)y i )
dx

r
,

where wi ∈ Zq[x ] for all 0 ≤ i ≤ d − 1 and deg(wi ) ≥ deg(r) for
some 0 ≤ i ≤ d − 1. We define m = (deg(w)− deg(r) + 1). If we
represent the class of ω in H1

rig(U) as in the Theorem using the
Proposition, then

pblogp(m)cui (x) ∈ Zq[x ]

for all 0 ≤ i ≤ d − 1.
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A basis for the cohomology

First, let E denote the Qq-vector space of 1-forms

ω = (
d−1∑
i=0

ui (x)y i )
dx

r
,

where ui ∈ Qq[x ] satisfies deg(ui ) < deg(r) for all 0 ≤ i ≤ d − 1.
Now, let E1 denote the kernel of the map that sends ω ∈ E to the
element ∂Q

∂y

∑d−1
i=0 uiy

i of Qq[x , y ]/(Q, r). Finally, let E2 denote

the subspace of E1 generated by the elements d(y i ) for all
0 ≤ i ≤ d − 1.

Theorem

We have isomorphisms:

H1
rig(U) ∼= E/E2, H1

rig(X − x−1(∞)) ∼= E1/E2.
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Final remarks

This allows us to compute Z (X − x−1(∞),T ), from which
Z (X ,T ) can be easily obtained.

The assumption deg(M) < deg(r) can be removed by
temporarily using a basis for the Zq[x ]-module Zq[x , y ]/(Q)
with respect to which it is satisfied, when carrying out the
reductions at ∞ in the cohomology.

The assumption that Q = 0 is smooth over Zq can probably
be removed if we know a basis for the integral closure of
Zq[x ] in the function field Qq(x , y).

The way we compute in the cohomology is taken from work of
Lauder (and his student Walker) on the fibration method.

Alan G.B. Lauder, ”A recursive method for computing zeta
functions of varieties”
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