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Introduction

Zeta functions

Suppose that
o F, finite field of cardinality g = p".

e X/F, a smooth proper algebraic curve of genus g.
Recall that the zeta function of X is defined as

2(X.7) = (> IX(Fy) ).
i=1
It follows from the Weil conjectures that Z(X, T) is of the form
xX(T)
(1-T)A—qT)
where x(T) € Z[T] of degree 2g, with inverse roots that
@ have absolute value q%

@ are permuted by the map x — gq/x.
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Introduction

Computing zeta functions

Problem
How to compute Z(X, T) (efficiently)? J

Note that this problem has cryptographic applications when X is a
(hyper)elliptic curve.

Theorem

Let F,, denote the pth power Frobenius map and H;'j.g(X) the rigid
cohomology. Then

X(T) = det(1 — T FJ |H,(X)).
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Kedlaya's algorithm

Hyperelliptic curves

We first consider hyperelliptic curves.

Suppose that p # 2. A hyperelliptic curve X is given by an (affine)
equation of the form

y? = Q(x),

with Q € F4[x] a monic polynomial of degree 2g + 1 with gcd(Q, Q') = 1.
To define Hrlig(X), we start by lifting Q to characteristic 0:

Let Q € Z,[x] denote a monic lift of Q of degree 2g + 1.
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Kedlaya's algorithm

Some rings

We define a ring Zq<x,y,y_1>Jr of overconvergent functions:

o0 o0
aiix'ylai i €Zy,3p>1: lim |a;j|p' =0}
{;j_z_:oo 1J y| 1J g, 3P i+|j|—>oo‘ I,j|p }

Moreover, we denote

R=2Zglx,y,y /("= Q), R'=Zyx,y,y H/(y*-Q),

U = SpecR, U=U®Qq, U=U®&F,.
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Rigid cohomology

We define the overconvergent Kahler differentials

. RidxaRidy

RET (2ydy — Q'dx)
and the overconvergent De Rham complex

d

Q%0 0 R Qi —— 0.

We then have

H}g(U) = HY Q% ® Qq) = coker(d) ® Qq.
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Frobenius lift

The pth power Frobenius map on R ® F, can be lifted to R.

If o € Gal(Qq/Qp) denotes the unique lift of the pth power Frobenius
map on Fg, then

Fo(y)? = Q7(Fp(x)).

So we define

FP(X) = Xp7

N

Foly) = Q7(xP)

e L) Q00

y2P

The square root can be computed efficiently by Hensel lifting.
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Kedlaya's algorithm

Computing in the cohomology

We can write any 1-form w € Qp+ as

i ai()ﬁ) dx,

i=—00

with aj € Z4[x] of degree < 2g + 1 for all i € Z. Writing
B(x) = A1(x)Q(x) + Ax(x)Q'(x), we have

B(x)‘;)f = (A0 + ?IAE(;(;) o

yl
This allows us to eliminate all terms with / > 2. We can do something
similar for the terms with / < 0.
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Kedlaya's algorithm

A basis for the cohomology

As a consequence, one can show that:

Theorem
A basis for Hrl,g( U) is given by
[Xoﬁ, ., xel dX, odX, e X2 dX]
y'y y?
and the first 2g vectors form a basis for the subspace H”g(X ).
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Kedlaya's algorithm

Kedlaya, ‘Counting points on hyperelliptic curves using
Monsky-Washnitzer cohomology’ (2001):

e Compute F, (l) and F (X"Q) = PXiijp*le(%)dX-

@ Reduce back to the basis [xO dx ...,ng_l%] and read off the matrix
¢ of Fj, on Hrllg(X)
e Compute the matrix ®(") = ¢°” .®7® of Fj on Hrllg(X)

@ Determine x(T) = det(1 —Fj T|Hr|g(X)).

The polynomial x(T) = Z,?io xi T € Z[T] is determined exactly if known
to high enough p-adic precision, since there are explicit bounds for the size
of its coefficients.
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More general curves

More general curves

We let X /F, denote the smooth projective curve birational to
Q(x,y) = y* + Qu_1(x)y* ' +...+ Q =0,

where Q(x,y) is irreducible separable and Q;(x) € F4[x] for all
0<i<dy—1.

We let Q € Z,4[x] denote a lift of Q that is monic of degree d in y.

Ly, J
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Proposition

The Z 4[x]-module Z4[x, y]/(Q) is free with basis [1,y, ..




More general curves

Some notation

Definition
We let A(x) € Zg4[x] denote the resultant of Q and %—g with respect to

the variable y and r(x) € Z,4[x] the squarefree polynomial
r=20/(ged(A, 92)).

Note that A(x) # 0 (mod p) since the map x is separable.

Definition
1 1
§=2Z4lx. ] R =Zglx, ~y1/(Q),
1 1
St = Z,(x, ;>T, RI = Z,(x, ;7}/>T/(Q)7

and write V = SpecS, U = SpecR, so that x defines a finite étale
morphism from U to V.

Jan Tuitman, KU Leuven Counting points on (more general) curves May 21, 2014

12 / 27



More general curves

Assumptions

Now we need some assumptions.

Assumption
© There exists a smooth proper curve X over Z, and a smooth relative
divisor Dy on X such thatUd = X \ Dy. We write X = X ® Qg for
the generic fibre of X.
@ There exists a smooth relative divisor Dp1 on P%q such that

V: P%q\Dpl.

Definition
Welet U=U ®z, Fqo, V=V ®z, F4 denote the special fibres and
U=Uw®z,Qq, V=V ®z, Qq the generic fibres of U and V, respectively.
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More general curves

More assumptions

Assumption

We assume that the zero locus of Q in A%q is smooth over Z.

Assumption

We assume that a matrix W € Gly (Z4[x,x~1]) is known such that
if we denote

dx—1
b= Wy,
i=0
then [bg°, ..., b3’ 1] is an integral basis for the function field Qq(x, y)

over Qq[x1].
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More general curves

An auxiliary polynomial

Proposition

The element s = r/% of Qq(x,y) is contained in Z4[x,y]/(Q).

Sketch of the proof: A/%—? is contained in Zg[x, y]/(Q) by the definition of A as the determinant of the Sylvester matrix.
By the assumption, [1,y, ..., ydxfl] is an integral basis of Qq[x, y]/(Q) over Qq[x]. So for any monic irreducible polynomial
T € Zg[x], the element %—?/ﬂ' of Qq(x, y) is not integral at (7) because of the term (d/ﬂ)de*l, hence its inverse 71'/‘95—';2

is integral (even zero) at (7). Since H"\A 7 = r, this proves the Proposition.
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Rigid cohomology

Again we define the overconvergent Kahler differentials
Qb — Ridx & RTdy
RT — dQ
and the overconvergent De Rham complex

.. , d
Q. : 0 R

QRT E— O

We then still have

H(U) = HY(Q: © Qq) = coker(d) @ Qq.
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More general curves

Frobenius lift

Define sequences («;)i>0, (8i)i>0, with «; € St and B € R, by the
following recursion:

1
Qg = ﬁa
60 = yp7
ajr1 = (2 — a;r?(xP)) (mod pzfﬂ),
Biv1 = Bi — Q7(xP, Bi)s7 (xP, Bi)ai (mod p*").

Then one easily checks that the o-semilinear ringhomomorphism
Fp:RT — RT defined by

Fp(x) = x*, Fp(%) = lim «;, Fo(y) = lim g;,

1—00 1—00

is a Frobenius lift.
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More general curves

The connection matrix

Definition
Let G € My, x4, (Zq4[x,1/r]) denote the matrix such that

dx—1
- . . i150Q ZX :
i=0

Note that Gdx has at most a simple pole at the zeros of r.

Proposition
Let G® € My xa (Zq4]x,x1,1/r]) denote the matrix such that

dx—1

i=0

Then G*°dx has at most a simple pole at x = cc.
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More general curves

The exponents

Definition

Let xo € Pl(Qq) be a geometric point # oo. The exponents of Gdx at xg
are defined as the eigenvalues of the residue matrix (x — x0) G|x=x,- The
exponents of G™dx at oo are defined as its exponents at t = 0, after
substituting x = 1/t.

Proposition

The exponents of Gdx at any point xy # oo and the exponents of G dx
at x = oo are elements of QN Z,, and are contained in the interval [0,1).
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More general curves

Effective convergence bounds

Proposition
Let N € N. Then modulo p":
@ F,(1/r) is congruent to ZPNP @, where for all p < i < pN the
polynomial p; € Z4[x] satisfies deg(p;) < deg(r).
@ F,(y') is congruent to Zj‘?l;al ¢ij(x)y!, where

p(N—1)

dij= d)uri( ),

k=0

and ¢; j ik € Zg[x] satisfies:
deg(¢i0) < — ordoo (W) — pordac (W) 1),
deg(¢ij k) < deg(r), for all k > 0.

Sketch of the proof: Effective bounds for Frobenius structures on connections, T. and Kedlaya, 2013.
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More general curves

Computing in the cohomology: finite points

Proposition

For all £ € N and every vector w € Qq[x]®%, there exist vectors
u, v € Qq[x]®% with deg(v) < deg(r), such that

dyx—1 1 dx—1 1 dy—1 1
Z,’:o wiy' % —d Z;:o viy' 4 Zi:o uiy' %
rt ro rt rt-1 r’

Sketch of the proof: r is separable, so r’ is invertible in Qq[x]/(r). v has to satisfy (M - Z/)v = 'i, (mod r) over

7
r
Qq[x]/(r). The finite exponents of Gdx = (M /r)dx are contained in [0, 1), hence det(¢/ — M/r’) is invertible in Qq[x]/(r), so
there is a unique solution v. We now take
w— (M*l!'l)v
— d
U= —— -
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More general curves

Computing in the cohomology: infinite points

Proposition
For every vector w € Qq[x, x 1]%% with
ordso(w) < — deg(r),

there exist vectors u,v € Qq[x, x 1]®% with orde(u) > ordee(w), such
that

d—1 " d—1 d—1 e
> wib®)— = d(d vib)+ (D uibi®) =
i=0 i=0 i=0
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More general curves

Precision loss: finite points

Proposition

Let w € QY(U) be of the form

de 1W/y dX

w =
rt r

where £ € N and deg(w) < deg(r). We define
e = max{ep|P € X \ U, x(P) # oo}.

If we represent the class of w in r,g( ) by (de ! ) &, with

o Uiy )7
u € Qq[x]®%, then
ongp(Ze)Ju e Zq[X]EBdX-
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More general curves

Precision loss: infinite points

Proposition

Let w € QY(U) be of the form

%l dx
w=()_ wilx,x bF)—,

) r
i=0

with ordeo(w) < ordg(W°) — deg(r) + 1. Put

m = —ordoo(w) — deg(r) + 1, exoc = max{ep|P € X \ U, x(P) = oo}.

rig

If we represent the class of w in HX: (U) by (deol uiy )Q, with
u € Qqlx,x 1]%% such that ordoo(u) > ordo(W>) — deg(r) + 1, then

pLIogp(mew)j ue Zq[X, X—l]@dx'
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More general curves

Computing a basis for

rlg(U)

We can use these theorems to compute a basis for the cohomology using linear algebra.

Theorem

Define the following Qq-vector spaces:

dy—1

i\ dx
Eo ={( > uwilx)y')—
i=0 r
dy—1 d
Eoo = {( X wilxx D5 =
i=0
dy—1 )
Bo={>_ vi(x)y/
iz0
dy—1

Boo = { > vilx,x )b
i=0

RS Q,:,[x]eedx}7
U € Qglx, x 1P ord oo (u) > ordg(W) — deg(r) + 1},
v E Qql®hy,

v E Qq[x,x71]®dx,ordm(v) > ordo(Woo)}A

Then Eg N Exo and d(By N Boo) are finite dimensional Qq-vector spaces and

H}g(U) 2 (Eo N Exo)/d(Bo N Boo).
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More general curves

Some remarks

Computing a basis for Hrlig(U) is now a matter of linear algebra. Any
1-form on U can be reduced to this basis using the theorems above. We
can also recover Hrlig(X) inside Hrlig(U) as the kernel of a cohomological

residue map.

We have now generalised all the steps in Kedlaya's algorithm (lifting
Frobenius, computing in cohomology, bounding the loss of p-adic
precision) from hyperelliptic curves to much more general curves.

Our assumptions can be weakened. We only need a good lift of the curve

and integral bases for the function field Qq(x, y) over Qq[x] and Qq4[x 1],
respectively. Therefore, our approach works for just about any curve.
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The algorithm

Let dx, d, be the degrees of Q in y, x, respectively. Moreover, recall that
g = p" with p prime. The runtime of our algorithm is:

@(pdfd;,‘n3).
Note that for dy fixed this is @(pdj’n3) like Kedlaya's algorithm.

We have completed a MAGMA implementation of the algorithm (under
the assumptions in this presentation) that is very efficient in practice.

preprint: http://arxiv.org/abs/1402.6758.
code: pcc_p and pcc_q packages at

https://perswww.kuleuven.be/jan_tuitman.
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