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Introduction

Zeta functions

Suppose that

Fq finite field of cardinality q = pn.

X/Fq a smooth proper algebraic curve of genus g .

Recall that the zeta function of X is defined as

Z (X ,T ) = exp(
∞∑

i=1

|X (Fqi )|
T i

i
).

It follows from the Weil conjectures that Z (X ,T ) is of the form

χ(T )

(1− T )(1− qT )
,

where χ(T ) ∈ Z[T ] of degree 2g , with inverse roots that

have absolute value q
1
2

are permuted by the map x → q/x .
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Introduction

Computing zeta functions

Problem

How to compute Z (X ,T ) (efficiently)?

Note that this problem has cryptographic applications when X is a
(hyper)elliptic curve.

Theorem

Let Fp denote the pth power Frobenius map and H∗rig(X ) the rigid
cohomology. Then

χ(T ) = det(1− T Fn
p |H1

rig(X )).
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Kedlaya’s algorithm

Hyperelliptic curves

We first consider hyperelliptic curves.

Suppose that p 6= 2. A hyperelliptic curve X is given by an (affine)
equation of the form

y 2 = Q(x),

with Q ∈ Fq[x ] a monic polynomial of degree 2g + 1 with gcd(Q,Q ′) = 1.

To define H1
rig(X ), we start by lifting Q to characteristic 0:

Let Q ∈ Zq[x ] denote a monic lift of Q of degree 2g + 1.
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Kedlaya’s algorithm

Some rings

We define a ring Zq〈x , y , y−1〉† of overconvergent functions:

{
∞∑

i=0

∞∑
j=−∞

ai ,j x
i y j |ai ,j ∈ Zq,∃ρ > 1: lim

i+|j |→∞
|ai ,j |ρi = 0}.

Moreover, we denote

R = Zq[x , y , y−1]/(y 2 −Q), R† = Zq〈x , y , y−1〉†/(y 2 −Q),

U = SpecR, U = U ⊗Qq, U = U ⊗ Fq.
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Kedlaya’s algorithm

Rigid cohomology

We define the overconvergent Kähler differentials

Ω1
R† =

R†dx ⊕ R†dy

(2ydy −Q′dx)

and the overconvergent De Rham complex

Ω•R† : 0 −−−−→ R† d−−−−→ ΩR† −−−−→ 0.

We then have

H1
rig(U) = H1(Ω•R† ⊗Qq) = coker(d)⊗Qq.
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Kedlaya’s algorithm

Frobenius lift

The pth power Frobenius map on R⊗ Fq can be lifted to R.

If σ ∈ Gal(Qq/Qp) denotes the unique lift of the pth power Frobenius
map on Fq, then

Fp(y)2 = Qσ(Fp(x)).

So we define

Fp(x) = xp,

Fp(y) = Qσ(xp)
1
2 = y p

(
1 +
Qσ(xp)−Q(x)p

y 2p

) 1
2
.

The square root can be computed efficiently by Hensel lifting.
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Kedlaya’s algorithm

Computing in the cohomology

We can write any 1-form ω ∈ ΩR† as

∞∑
i=−∞

ai (x)

y i
dx ,

with ai ∈ Zq[x ] of degree < 2g + 1 for all i ∈ Z. Writing
B(x) = A1(x)Q(x) + A2(x)Q ′(x), we have

B(x)
dx

y i
≡
(

A1(x) +
2A′2(x)

(i − 2)

) dx

y i−2
.

This allows us to eliminate all terms with i > 2. We can do something
similar for the terms with i ≤ 0.
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Kedlaya’s algorithm

A basis for the cohomology

As a consequence, one can show that:

Theorem

A basis for H1
rig(U) is given by

[x0 dx

y
, . . . , x2g−1 dx

y
, x0 dx

y 2
, . . . , x2g dx

y 2
]

and the first 2g vectors form a basis for the subspace H1
rig(X ).

Jan Tuitman, KU Leuven Counting points on (more general) curves May 21, 2014 9 / 27



Kedlaya’s algorithm

Kedlaya’s algorithm

Kedlaya, ‘Counting points on hyperelliptic curves using
Monsky-Washnitzer cohomology’ (2001):

Compute Fp( 1
y ) and Fp(x i dx

y ) = px ip+p−1Fp( 1
y )dx .

Reduce back to the basis [x0 dx
y , . . . , x

2g−1 dx
y ] and read off the matrix

Φ of Fp on H1
rig(X ).

Compute the matrix Φ(n) = Φσn−1
. . .ΦσΦ of Fn

p on H1
rig(X ).

Determine χ(T ) = det(1− Fn
p T |H1

rig(X )).

The polynomial χ(T ) =
∑2g

i=0 χi T
i ∈ Z[T ] is determined exactly if known

to high enough p-adic precision, since there are explicit bounds for the size
of its coefficients.
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More general curves

More general curves

We let X/Fq denote the smooth projective curve birational to

Q(x , y) = y dx + Qd−1(x)y dx−1 + . . .+ Q0 = 0,

where Q(x , y) is irreducible separable and Qi (x) ∈ Fq[x ] for all
0 ≤ i ≤ dx − 1.

We let Q ∈ Zq[x ] denote a lift of Q that is monic of degree dx in y .

Proposition

The Zq[x ]-module Zq[x , y ]/(Q) is free with basis [1, y , . . . , y dx−1].
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More general curves

Some notation

Definition

We let ∆(x) ∈ Zq[x ] denote the resultant of Q and ∂Q
∂y with respect to

the variable y and r(x) ∈ Zq[x ] the squarefree polynomial
r = ∆/(gcd(∆, d∆

dx )).

Note that ∆(x) 6= 0 (mod p) since the map x is separable.

Definition

S = Zq[x ,
1

r
], R = Zq[x ,

1

r
, y ]/(Q),

S† = Zq〈x ,
1

r
〉†, R† = Zq〈x ,

1

r
, y〉†/(Q),

and write V = SpecS, U = SpecR, so that x defines a finite étale
morphism from U to V.
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More general curves

Assumptions

Now we need some assumptions.

Assumption

1 There exists a smooth proper curve X over Zq and a smooth relative
divisor DX on X such that U = X \ DX . We write X = X ⊗Qq for
the generic fibre of X .

2 There exists a smooth relative divisor DP1 on P1
Zq

such that

V = P1
Zq
\ DP1 .

Definition

We let U = U ⊗Zq Fq, V = V ⊗Zq Fq denote the special fibres and
U = U ⊗Zq Qq, V = V ⊗Zq Qq the generic fibres of U and V, respectively.
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More general curves

More assumptions

Assumption

We assume that the zero locus of Q in A2
Zq

is smooth over Zq.

Assumption

We assume that a matrix W∞ ∈ Gldx (Zq[x , x−1]) is known such that
if we denote

b∞j =
dx−1∑
i=0

W∞
i+1,j+1y i ,

then [b∞0 , . . . , b
∞
dx−1] is an integral basis for the function field Qq(x , y)

over Qq[x−1].
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More general curves

An auxiliary polynomial

Proposition

The element s = r/∂Q∂y of Qq(x , y) is contained in Zq[x , y ]/(Q).

Sketch of the proof: ∆/ ∂Q
∂y

is contained in Zq [x, y ]/(Q) by the definition of ∆ as the determinant of the Sylvester matrix.

By the assumption, [1, y, . . . , ydx−1] is an integral basis of Qq [x, y ]/(Q) over Qq [x]. So for any monic irreducible polynomial

π ∈ Zq [x], the element ∂Q
∂y
/π of Qq (x, y) is not integral at (π) because of the term (d/π)ydx−1, hence its inverse π/ ∂Q

∂y

is integral (even zero) at (π). Since
∏
π|∆ π = r , this proves the Proposition.
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More general curves

Rigid cohomology

Again we define the overconvergent Kähler differentials

Ω1
R† =

R†dx ⊕ R†dy

dQ

and the overconvergent De Rham complex

Ω•R† : 0 −−−−→ R† d−−−−→ ΩR† −−−−→ 0.

We then still have

H1
rig(U) = H1(Ω•R† ⊗Qq) = coker(d)⊗Qq.
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More general curves

Frobenius lift

Define sequences (αi )i≥0, (βi )i≥0, with αi ∈ S† and βi ∈ R†, by the
following recursion:

α0 =
1

r p
,

β0 = y p,

αi+1 = αi (2− αi r
σ(xp)) (mod p2i+1

),

βi+1 = βi −Qσ(xp, βi )sσ(xp, βi )αi (mod p2i+1
).

Then one easily checks that the σ-semilinear ringhomomorphism
Fp : R† → R† defined by

Fp(x) = xp, Fp(
1

r
) = lim

i→∞
αi , Fp(y) = lim

i→∞
βi ,

is a Frobenius lift.
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More general curves

The connection matrix

Definition

Let G ∈ Mdx×dx (Zq[x , 1/r ]) denote the matrix such that

d(y j ) = jy j−1dy = −jy j−1 s

r

∂Q
∂x

dx =
dx−1∑
i=0

Gi+1,j+1y i dx .

Note that Gdx has at most a simple pole at the zeros of r .

Proposition

Let G∞ ∈ Mdx×dx (Zq[x , x−1, 1/r ]) denote the matrix such that

db∞j =
dx−1∑
i=0

G∞i+1,j+1b∞i dx .

Then G∞dx has at most a simple pole at x =∞.
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More general curves

The exponents

Definition

Let x0 ∈ P1(Q̄q) be a geometric point 6=∞. The exponents of Gdx at x0

are defined as the eigenvalues of the residue matrix (x − x0)G |x=x0 . The
exponents of G∞dx at ∞ are defined as its exponents at t = 0, after
substituting x = 1/t.

Proposition

The exponents of Gdx at any point x0 6=∞ and the exponents of G∞dx
at x =∞ are elements of Q ∩ Zp and are contained in the interval [0, 1).
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More general curves

Effective convergence bounds

Proposition

Let N ∈ N. Then modulo pN :

1 Fp(1/r) is congruent to
∑pN

i=p
ρi (x)

r i , where for all p ≤ i ≤ pN the
polynomial ρi ∈ Zq[x ] satisfies deg(ρi ) < deg(r).

2 Fp(y i ) is congruent to
∑dx−1

j=0 φi ,j (x)y j , where

φi ,j =

p(N−1)∑
k=0

φi ,j ,k (x)

r k
,

and φi ,j ,k ∈ Zq[x ] satisfies:
deg(φi ,j ,0) < − ord∞(W∞)− p ord∞((W∞)−1),
deg(φi ,j ,k ) < deg(r), for all k > 0.

Sketch of the proof: Effective bounds for Frobenius structures on connections, T. and Kedlaya, 2013.
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More general curves

Computing in the cohomology: finite points

Proposition

For all ` ∈ N and every vector w ∈ Qq[x ]⊕dx , there exist vectors
u, v ∈ Qq[x ]⊕dx with deg(v) < deg(r), such that∑dx−1

i=0 wi y
i

r `
dx

r
= d

(∑dx−1
i=0 vi y

i

r `

)
+

∑dx−1
i=0 ui y

i

r `−1

dx

r
.

Sketch of the proof: r is separable, so r′ is invertible in Qq [x]/(r). v has to satisfy
(

M
r′ − `I

)
v ≡ u

r′ (mod r) over

Qq [x]/(r). The finite exponents of Gdx = (M/r)dx are contained in [0, 1), hence det(`I −M/r′) is invertible in Qq [x]/(r), so
there is a unique solution v . We now take

u =
w−
(

M−`r′ I
)

v

r
− dv

dx
.
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More general curves

Computing in the cohomology: infinite points

Proposition

For every vector w ∈ Qq[x , x−1]⊕dx with

ord∞(w) ≤ − deg(r),

there exist vectors u, v ∈ Qq[x , x−1]⊕dx with ord∞(u) > ord∞(w), such
that

(
dx−1∑
i=0

wi b
∞
i )

dx

r
= d(

dx−1∑
i=0

vi b
∞
i ) + (

dx−1∑
i=0

ui b
∞
i )

dx

r
.
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More general curves

Precision loss: finite points

Proposition

Let ω ∈ Ω1(U) be of the form

ω =

∑dx−1
i=0 wi y

i

r `
dx

r
,

where ` ∈ N and deg(w) < deg(r). We define

e = max{eP |P ∈ X \ U , x(P) 6=∞}.

If we represent the class of ω in H1
rig(U) by

(∑dx−1
i=0 ui y

i
)

dx
r , with

u ∈ Qq[x ]⊕dx , then

pblogp(`e)cu ∈ Zq[x ]⊕dx .

Jan Tuitman, KU Leuven Counting points on (more general) curves May 21, 2014 23 / 27



More general curves

Precision loss: infinite points

Proposition

Let ω ∈ Ω1(U) be of the form

ω = (
dx−1∑
i=0

wi (x , x−1)b∞i )
dx

r
,

with ord∞(w) ≤ ord0(W∞)− deg(r) + 1. Put

m = − ord∞(w)− deg(r) + 1, e∞ = max{eP |P ∈ X \ U , x(P) =∞}.

If we represent the class of ω in H1
rig(U) by

(∑dx−1
i=0 ui y

i
)

dx
r , with

u ∈ Qq[x , x−1]⊕dx such that ord∞(u) > ord0(W∞)− deg(r) + 1, then

pblogp(me∞)cu ∈ Zq[x , x−1]⊕dx .
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More general curves

Computing a basis for H1
rig(U)

We can use these theorems to compute a basis for the cohomology using linear algebra.

Theorem

Define the following Qq -vector spaces:

E0 = {
(dx−1∑

i=0

ui (x)y i ) dx

r
: u ∈ Qq [x]⊕dx },

E∞ = {
(dx−1∑

i=0

ui (x, x−1)b∞i
) dx

r
: u ∈ Qq [x, x−1]⊕dx , ord∞(u) > ord0(W∞)− deg(r) + 1},

B0 = {
dx−1∑

i=0

vi (x)y i : v ∈ Qq [x]⊕dx },

B∞ = {
dx−1∑

i=0

vi (x, x−1)b∞i : v ∈ Qq [x, x−1]⊕dx , ord∞(v) > ord0(W∞)}.

Then E0 ∩ E∞ and d(B0 ∩ B∞) are finite dimensional Qq -vector spaces and

H1
rig(U) ∼= (E0 ∩ E∞)/d(B0 ∩ B∞).
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More general curves

Some remarks

Computing a basis for H1
rig(U) is now a matter of linear algebra. Any

1-form on U can be reduced to this basis using the theorems above. We
can also recover H1

rig(X ) inside H1
rig(U) as the kernel of a cohomological

residue map.

We have now generalised all the steps in Kedlaya’s algorithm (lifting
Frobenius, computing in cohomology, bounding the loss of p-adic
precision) from hyperelliptic curves to much more general curves.

Our assumptions can be weakened. We only need a good lift of the curve
and integral bases for the function field Qq(x , y) over Qq[x ] and Qq[x−1],
respectively. Therefore, our approach works for just about any curve.
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More general curves

The algorithm

Let dx , dy be the degrees of Q in y , x , respectively. Moreover, recall that
q = pn with p prime. The runtime of our algorithm is:

Õ(pd6
x d4

y n3).

Note that for dx fixed this is Õ(pd4
y n3) like Kedlaya’s algorithm.

We have completed a MAGMA implementation of the algorithm (under
the assumptions in this presentation) that is very efficient in practice.

preprint: http://arxiv.org/abs/1402.6758.

code: pcc_p and pcc_q packages at

https://perswww.kuleuven.be/jan_tuitman.
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