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Zeta functions

Suppose that

Fq finite field of cardinality q = pn.

X/Fq a smooth proper algebraic curve of genus g .

Recall that the zeta function of X is defined as

Z (X ,T ) = exp(
∞∑
i=1

|X (Fqi )|
T i

i
).

It follows from the Weil conjectures that Z (X ,T ) is of the form

χ(T )

(1− T )(1− qT )
,

where χ(T ) ∈ Z[T ] of degree 2g , with inverse roots that

have absolute value q
1
2

are permuted by the map x → q/x .



The defining equation

We let X/Fq denote the smooth projective curve given by the
(affine) equation

Q(x , y) = yd + Qd−1(x)yd−1 + . . .+ Q0 = 0,

where Q(x , y) is irreducible separable and Qi (x) ∈ Fq[x ] for all
0 ≤ i ≤ d − 1.

We let Q ∈ Zq[x ] denote a lift of Q containing the same
monomials.

Proposition

The Zq[x ]-module Zq[x , y ]/(Q) is free with basis [1, y , . . . , yd−1].



The discriminant

Definition

We let ∆(x) ∈ Zq[x ] denote the resultant of Q and ∂Q
∂y with

respect to the variable y and r(x) ∈ Zq[x ] the squarefree
polynomial r = ∆/(gcd(∆, d∆

dx )).



Some notation

We define

S = Zq[x , 1/r ], R = Zq[x , 1/r , y ]/(Q),

S† = Zq〈x , 1/r〉†, R† = Zq〈x , 1/r , y〉†/(Q),

V = SpecS, U = SpecR,

so that x defines a finite étale morphism from U to V. Moreover,
we denote the special and generic fibres by

U = U ⊗ Fq, V = V ⊗ Fq U = U ⊗Qq, V = V ⊗Qq.



Assumption I

Assumption

1 There exists a smooth proper curve X over Zq and a smooth
relative divisor DX on X such that U = X \ DX .

2 There exists a smooth relative divisor DP1 on P1
Zq

such that

V = P1
Zq
\ DP1 .



Assumption II

Assumption

The zero locus of Q in A2
Qq

is smooth.

Proposition

The element s = r/∂Q∂y of Qq(x , y) is contained in Zq[x , y ]/(Q).

Sketch of the proof: ∆/ ∂Q
∂y

is contained in Zq [x, y ]/(Q) by the definition of ∆ as the determinant of the

Sylvester matrix. By the assumption, [1, y, . . . , yd−1] is an integral basis of Qq [x, y ]/(Q) over Qq [x]. So for

any monic irreducible polynomial π ∈ Zq [x], the element ∂Q
∂y
/π of Qq(x, y) is not integral at (π) because of the

term (d/π)yd−1, hence its inverse π/ ∂Q
∂y

is integral (even zero) at (π). Since
∏
π|∆ π = r , this proves the

Proposition.



Assumption III

Assumption

We assume that a matrix W∞ ∈ Gld(Zq[x , x−1]) is known such
that if we denote

b∞j =
d−1∑
i=0

W∞
i+1,j+1y i

for all 0 ≤ j ≤ d − 1, then [b∞0 , · · · , b∞d−1] is an integral basis for
Qq(x , y) over Qq[x−1].

When Q is nondegenerate with respect to its Newton polygon,
W∞ can be written down directly. In general there are good
algorithms to compute integral bases in function fields.



Example: hyperelliptic case

p odd

Q = y 2 − f (x)

f (x) ∈ Zq[x ] of degree 2g + 1 with (f , f ′) = 1

Assumptions are satisfied

∆(x) = r(x) = f (x) = y 2

s(x , y) = y/2

W∞ =

(
1 0

0 x−(g+1)

)



Frobenius lift

Let σ be the p-power Frobenius on Zq Define sequences (αi )i≥0,
(βi )i≥0, with αi ∈ S† and βi ∈ R†, by the following recursion:

α0 =
1

rp
,

β0 = yp,

αi+1 = αi (2− αi r
σ(xp)) (mod p2i+1

),

βi+1 = βi −Qσ(xp, βi )sσ(xp, βi )αi (mod p2i+1
).

Then one easily checks that the σ-semilinear ringhomomorphism
Fp : R† → R† defined by

Fp(x) = xp, Fp(
1

r
) = lim

i→∞
αi , Fp(y) = lim

i→∞
βi ,

is a Frobenius lift.



Effective convergence bounds

Proposition

Let N ∈ N. Then modulo pN :

1 Fp(1/r) is congruent to
∑pN

i=p
ρi (x)
r i

, where for all p ≤ i ≤ pN
the polynomial ρi ∈ Zq[x ] satisfies deg(ρi ) < deg(r).

2 Fp(y i ) is congruent to
∑d−1

j=0 φi ,j(x)y j , where

φi ,j =

p(N−1)∑
k=0

φi ,j ,k(x)

rk
,

for all 0 ≤ i , j ≤ d − 1 and φi ,j ,k ∈ Zq[x ] satisfies
deg(φi ,j ,0) ≤ − ord∞(W∞)− p ord∞((W∞)−1)
and deg(φi ,j ,k) < deg(r), for all 0 ≤ i , j ≤ d − 1 and
1 ≤ k ≤ p(N − 1).



Rigid cohomology

We define the overconvergent Kähler differentials

Ω1
R† =

R†dx ⊕ R†dy

dQ

and the overconvergent De Rham complex

Ω•R† : 0 −−−−→ R† d−−−−→ ΩR† −−−−→ 0.

We then have

H1
rig(U) = H1(Ω•R† ⊗Qq) = coker(d)⊗Qq.



Computing in the cohomology: finite points

Proposition

For all ` ∈ N and every vector w ∈ Qq[x ]⊕d , there exist (unique)
vectors u, v ∈ Qq[x ]⊕d with deg(v) < deg(r), such that∑d−1

i=0 wiy
i

r `
dx

r
= d

(∑d−1
i=0 viy

i

r `

)
+

∑d−1
i=0 uiy

i

r `−1

dx

r
.

Sketch of the proof: r is separable, so r′ is invertible in Qq [x]/(r). v has to satisfy
(

M
r′ − `I

)
v ≡ u

r′ (mod r)

over Qq [x]/(r). The finite exponents of (M/r)dx are contained in [0, 1), hence det(`I − M/r′) is invertible in
Qq [x]/(r), so there is a unique solution v . We now take

u =
w−
(
M−`r′ I

)
v

r
− dv

dx
.



Precision loss: finite points

Proposition

Let ω ∈ Ω1
U be of the form

ω =

∑d−1
i=0 wi (x)y i

r `
dx

r
,

where ` ∈ N and wi ∈ Zq[x ] satisfies deg(wi ) < deg(r) for all
0 ≤ i ≤ d − 1. We define e = max{eP |P ∈ X \ U , x(P) 6=∞}. If

we represent the class of ω in H1
rig(U) by

(∑d−1
i=0 uiy

i
)
dx
r with

u ∈ Qq[x ]⊕d using the previous Proposition then

pblogp(`e)cu ∈ Zq[x ].



Computing in the cohomology: infinite points

Proposition

For every vector w ∈ Qq[x , x−1]⊕d with

ord∞(w) ≤ − deg(r),

there exist vectors u, v ∈ Qq[x , x−1]⊕d with ord∞(u) > ord∞(w)
such that

(
d−1∑
i=0

wib
∞
i )

dx

r
= d(

d−1∑
i=0

vib
∞
i ) + (

d−1∑
i=0

uib
∞
i )

dx

r
.

We do not actually want to reduce this far as new finite poles can
appear, we stop when ord∞(u) > ord0(W∞)− deg(r) + 1.



Precision loss: infinite points

Let ω ∈ Ω1(U) be of the form

ω = (
d−1∑
i=0

wi (x , x−1)b∞i )
dx

r
,

where w ∈ Zq[x , x−1]⊕d satisfies
ord∞(w) ≤ ord0(W∞)− deg(r) + 1. We define

m = − ord∞(w)− deg(r) + 1,

e∞ = max{eP |P ∈ X \ U , x(P) =∞}.

If we represent the class of ω in H1
rig(U) by

(∑d−1
i=0 uiy

i
)
dx
r , with

u ∈ Qq[x , x−1]⊕d such that ord∞(u) > ord0(W∞)− deg(r) + 1
using the previous proposition, then

pblogp(me∞)cu ∈ Zq[x , x−1]⊕d .



Algorithm

1 The Frobenius lifting and pole order reduction procedures
allow us to compute the action of the Frobenius Fp on
H1

rig(U) to any desired p-adic precision.

2 Using a cohomological residue map, we can identify H1
rig(X )

inside H1
rig(U) as in Kedlaya’s algorithm. We then only have

to compute with this subspace.

3 So we can compute χ(T ) = det(1− Fp T |H1
rig(X )) to any

desired p-adic precision.

4 Explicit bounds on the absolute values of the coefficients of
χ(T ) are known from the Weil conjectures, so if known to
high enough p-adic precision then χ(T ) is determined exactly.



Complexity

Recall that d = degy (Q), δ = degx(Q), q = pn.

Theorem

The runtime of the algorithm is Õ(pd6δ4n3).

Note that this is exponential in log(p), so bad for gathering
statistics on Frobenius distributions.

However, it is very good (polynomial, small exponents) in
everything else.

It would be interesting to try and combine the average polynomial
time machinery of Harvey with this algorithm to gather statistics
on Frobenius distributions of (more) complicated curves.



Implementation

I have implemented a somewhat restricted version of the algorithm
in MAGMA.

It seems to run 2-3 orders of magnitude faster than alternatives
like Castryck-Denef-Vercauteren for nondegenerate curves, while it
can be applied more generally.


