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Zeta functions

Suppose that

Fq finite field of cardinality q = pn.

X/Fq a smooth proper algebraic curve of genus g .

Recall that the zeta function of X is defined as

Z (X ,T ) = exp(
∞∑
i=1

|X (Fqi )|
T i

i
).

It follows from the Weil conjectures that Z (X ,T ) is of the form

χ(T )

(1− T )(1− qT )
,

where χ(T ) ∈ Z[T ] of degree 2g , with inverse roots that

have absolute value q
1
2

are permuted by the map x → q/x .
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Computing zeta functions

Problem

How to compute Z (X ,T ) (efficiently)?

Note that this problem has cryptographic applications when X is a
(hyper)elliptic curve.

Theorem

Let Fp denote the pth power Frobenius map and H∗rig(X ) the rigid
cohomology. Then

χ(T ) = det(1− T Fn
p |H1

rig(X )).
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Hyperelliptic curves

Suppose that p 6= 2. A hyperelliptic curve X is given by an (affine)
equation of the form

y2 = Q(x),

with Q ∈ Fq[x ] a monic polynomial of degree 2g + 1 with
gcd(Q,Q ′) = 1.

To define H1
rig(X ), we start by lifting Q to characteristic 0:

Let Q ∈ Zq[x ] denote a monic lift of Q of degree 2g + 1.
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Some rings

We define a ring Zq〈x , y , y−1〉† of overconvergent functions:

{
∞∑
i=0

∞∑
j=−∞

ai ,jx
iy j |ai ,j ∈ Zq,∃ρ > 1: lim

i+|j |→∞
|ai ,j |ρi = 0}.

Moreover, we denote

R = Zq[x , y , y−1]/(Q), R† = Zq〈x , y , y−1〉†/(Q)

U = SpecR, U = U ⊗Qq, U = U ⊗ Fq.
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Rigid cohomology

We define the overconvergent Kähler differentials

Ω1
R† =

R†dx ⊕ R†dy

(2ydy −Q′dx)

and the overconvergent De Rham complex

Ω•R† : 0 −−−−→ R† d−−−−→ ΩR† −−−−→ 0.

We then have

H1
rig(U) = H1(Ω•R† ⊗Qq) = coker(d)⊗Qq.
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Frobenius lift

The pth power Frobenius map on R⊗ Fq can be lifted to R.

If σ ∈ Gal(Qq/Qp) denotes the unique lift of the pth power
Frobenius map on Fq, then

Fp(y)2 = Qσ(Fp(x)).

So we define

Fp(x) = xp,

Fp(y) = Qσ(xp)
1
2 = yp

(
1 +
Qσ(xp)−Q(x)p

y2p

) 1
2
.

The square root can be computed efficiently by Hensel lifting.
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Computing in the cohomology

We can write any 1-form ω ∈ ΩR† as

∞∑
i=−∞

ai (x)

y i
dx ,

with ai ∈ Zq[x ] of degree < 2g + 1 for all i ∈ Z. Writing
B(x) = A1(x)Q(x) + A2(x)Q ′(x), we have

B(x)
dx

y i
≡
(
A1(x) +

2A′2(x)

(i − 2)

) dx

y i−2
.

This allows us to eliminate all terms with i > 2. We can do
something similar for the terms with i ≤ 0.
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A basis for the cohomology

As a consequence, one can show that:

Theorem

A basis for H1
rig(U) is given by

[x0 dx

y
, . . . , x2g−1 dx

y
, x0 dx

y2
, . . . , x2g dx

y2
]

and the first 2g vectors form a basis for the subspace H1
rig(X ).
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Kedlaya’s algorithm

A rough sketch:

Compute Fp( 1
y ) and Fp(x i dxy ) = px ip+p−1Fp( 1

y )dx .

Reduce back to the basis [x0 dx
y , . . . , x

2g−1 dx
y ] and read off the

matrix A of Fp on H1
rig(X ).

Compute the matrix A(n) = Aσ
n−1

. . .AσA of Fn
p on H1

rig(X ).

Determine χ(T ) = det(1− Fn
p T |H1

rig(X )).

The polynomial χ(T ) =
∑2g

i=0 χiT
i ∈ Z[T ] is determined exactly

if known to high enough p-adic precision, since there are explicit
bounds for the size of its coefficients.
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More general curves

We let X/Fq denote the smooth projective curve given by the
(affine) equation

Q(x , y) = yd + Qd−1(x)yd−1 + . . .+ Q0 = 0,

where Q(x , y) is irreducible separable and Qi (x) ∈ Fq[x ] for all
0 ≤ i ≤ d − 1.

We let Q ∈ Zq[x ] denote a lift of Q that is monic of degree d in y .

Proposition

The Zq[x ]-module Zq[x , y ]/(Q) is free with basis [1, y , . . . , yd−1].
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Some notation

Definition

We let ∆(x) ∈ Zq[x ] denote the resultant of Q and ∂Q
∂y with

respect to the variable y and r(x) ∈ Zq[x ] the squarefree
polynomial r = ∆/(gcd(∆, d∆

dx )).

Note that ∆(x) 6= 0 (mod p) since the map x is separable.

Definition

S = Zq[x ,
1

r
], R = Zq[x ,

1

r
, y ]/(Q),

S† = Zq〈x ,
1

r
〉†, R† = Zq〈x ,

1

r
, y〉†/(Q),

and write V = SpecS, U = SpecR, so that x defines a finite étale
morphism from U to V.
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The following assumption is essential:

Assumption

1 There exists a smooth proper curve X over Zq and a smooth
relative divisor DX on X such that U = X \ DX . We write
X = X ⊗Qq for the generic fibre of X .

2 There exists a smooth relative divisor DP1 on P1
Zq

such that

V = P1
Zq
\ DP1 .

Definition

We let U = U ⊗Zq Fq, V = V ⊗Zq Fq denote the special fibres and
U = U ⊗Zq Qq, V = V ⊗Zq Qq the generic fibres of U and V,
respectively.
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For convenience, we assume:

Assumption

The zero locus of Q in A2
Zq

is smooth over Zq.

Proposition

The element s = r/∂Q∂y of Qq(x , y) is contained in Zq[x , y ]/(Q).

Sketch of the proof: ∆/ ∂Q
∂y

is contained in Zq [x, y ]/(Q) by the definition of ∆ as the determinant of the

Sylvester matrix. By the assumption, [1, y, . . . , yd−1] is an integral basis of Qq [x, y ]/(Q) over Qq [x]. So for

any monic irreducible polynomial π ∈ Zq [x], the element ∂Q
∂y
/π of Qq(x, y) is not integral at (π) because of the

term (d/π)yd−1, hence its inverse π/ ∂Q
∂y

is integral (even zero) at (π). Since
∏
π|∆ π = r , this proves the

Proposition.
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Frobenius lift

Define sequences (αi )i≥0, (βi )i≥0, with αi ∈ S† and βi ∈ R†, by
the following recursion:

α0 =
1

rp
,

β0 = yp,

αi+1 = αi (2− αi r
σ(xp)) (mod p2i+1

),

βi+1 = βi −Qσ(xp, βi )s
σ(xp, βi )αi (mod p2i+1

).

Then one easily checks that the σ-semilinear ringhomomorphism
Fp : R† → R† defined by

Fp(x) = xp, Fp(
1

r
) = lim

i→∞
αi , Fp(y) = lim

i→∞
βi ,

is a Frobenius lift.
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The connection matrix

Definition

Let M ∈ Md×d(Zq[x ]) denote the matrix for which

d(y j) = jy j−1dy = −jy j−1 s

r

∂Q
∂x

dx =
d−1∑
i=0

(Mij

r

)
y idx ,

for all 0 ≤ j ≤ d − 1 as 1-forms on U .

For convenience, we assume:

Assumption

deg(M) < deg(r), or equivalently (M/r)dx has at most a simple
pole at x =∞.
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The exponents

Definition

Let x0 ∈ P1(Q̄q) be a geometric point 6=∞. The exponents of
(M/r)dx at x0 are defined as the eigenvalues of the residue matrix
(x − x0)(M/r)|x=x0 . Moreover, the exponents of (M/r)dx at ∞
are defined as its exponents at t = 0, after substituting x = 1/t.

Proposition

The exponents of (M/r)dx at any point x0 ∈ P1(Q̄q) are elements
of Q ∩ Zp. For x0 6=∞ they are contained in the interval [0, 1)
and for x0 =∞ in the interval [(d − 1)µ, 0], where

µ = min{ordP(y)

eP
: P ∈ x−1(∞)}.
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Effective convergence bounds

Proposition

Let N ∈ N. Then modulo pN :

1 Fp(1/r) is congruent to
∑pN

i=p
ρi (x)
r i

, where for all p ≤ i ≤ pN
the polynomial ρi ∈ Zq[x ] satisfies deg(ρi ) < deg(r).

2 Fp(y i ) is congruent to
∑d−1

j=0 φi ,j(x)y j , where

φi ,j =

p(N−1)+1∑
k=0

φi ,j ,k(x)

rk
,

for all 0 ≤ i , j ≤ d − 1 and φi ,j ,k ∈ Zq[x ] satisfies
deg(φi ,j ,0) < p(d − 1)(−µ) and deg(φi ,j ,k) < deg(r), for all
0 ≤ i , j ≤ d − 1 and 1 ≤ k ≤ p(N − 1) + 1.

Sketch of the proof: Effective bounds for Frobenius structures on connections, T. and Kedlaya, 2013.
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Computing in the cohomology I

Proposition

For all ` ∈ N and every vector w ∈ Qq[x ]⊕d , there exist (unique)
vectors u, v ∈ Qq[x ]⊕d with deg(v) < deg(r), such that∑d−1

i=0 wiy
i

r `
dx

r
= d

(∑d−1
i=0 viy

i

r `

)
+

∑d−1
i=0 uiy

i

r `−1

dx

r

as 1-forms on U.

Sketch of the proof: r is separable, so r′ is invertible in Qq [x]/(r). v has to satisfy
(

M
r′ − `I

)
v ≡ u

r′ (mod r)

over Qq [x]/(r). The finite exponents of (M/r)dx are contained in [0, 1), hence det(`I − M/r′) is invertible in
Qq [x]/(r), so there is a unique solution v . We now take

u =
w−
(
M−`r′ I

)
v

r
− dv

dx
.
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Computing in the cohomology II

Proposition

For every vector w ∈ Qq[x ]⊕d with deg(w) ≥ deg(r), there exist
vectors u, v ∈ Qq[x ]⊕d with deg(u) < deg(w), such that

(
d−1∑
i=0

wiy
i )
dx

r
= d(

d−1∑
i=0

viy
i ) + (

d−1∑
i=0

uiy
i )
dx

r

as 1-forms on U.

Sketch of the proof: We denote t = 1/x . Since deg(M) < deg(r), we can expand

M
r
dx =

(M−1
t

+ M0 + . . .
)
dt, where Mi ∈ Md×d (Qq) for all i . Similarly, if k = deg(w)− deg(r) + 2, then

we can write (
∑d−1

i=0 wi y
i ) dx

r
=
( b−k

tk
+

b−(k−1)

tk−1 + . . .
)
dt, where bi ∈ (Qq)⊕d for all i . The infinite

exponents of (M/r)dx are ≤ 0, so the linear system (M−1 − (k − 1)I )c = b−k has a unique solution

c ∈ (Qq)⊕d . We now take

v = cxk−1 and u = w − (Mv + r dv
dx

).
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Theorem

Every class in H1
rig(U) is represented by a 1-form of the form

(
d−1∑
i=0

ui (x)y i )
dx

r
,

where ui ∈ Qq[x ] satisfies deg(ui ) < deg(r) for all 0 ≤ i ≤ d − 1.

Sketch of the proof: By a comparison theorem of Baldassarri and Chiarellotto, we can restrict to classes that lie in
H1

dR(U). Using the previous two propositions (both repeatedly), such a class can be reduced to the required form.
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Precision loss I

Proposition

Let ω ∈ Ω1
U be of the form

ω =

∑d−1
i=0 wi (x)y i

r `
dx

r
,

where ` ∈ N and wi ∈ Zq[x ] satisfies deg(wi ) < deg(r) for all
0 ≤ i ≤ d − 1. We define e0 = max{eP |P ∈ X \ U , x(P) 6=∞}. If
we represent the class of ω in H1

rig(U) as in the Theorem using the
Proposition, then

pblogp(`e0)cui (x) ∈ Zq[x ]

for all 0 ≤ i ≤ d − 1.
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Precision loss II

Proposition

Let ω ∈ Ω1
U be of the form

ω = (
d−1∑
i=0

wi (x)y i )
dx

r
,

where wi ∈ Zq[x ] for all 0 ≤ i ≤ d − 1 and deg(wi ) ≥ deg(r) for
some 0 ≤ i ≤ d − 1. We define m = (deg(w)− deg(r) + 1) and
e∞ = max{eP |P ∈ X \ U , x(P) =∞}. If we represent the class of
ω in H1

rig(U) as in the Theorem using the Proposition, then

pblogp((m−(d−1)µ)e∞)cui (x) ∈ Zq[x ]

for all 0 ≤ i ≤ d − 1.
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A basis for the cohomology

First, let E denote the Qq-vector space of 1-forms

ω = (
d−1∑
i=0

ui (x)y i )
dx

r
,

where ui ∈ Qq[x ] satisfies deg(ui ) < deg(r) for all 0 ≤ i ≤ d − 1.
Now, let E1 denote the kernel of the map that sends ω ∈ E to the
element ∂Q

∂y

∑d−1
i=0 uiy

i of Qq[x , y ]/(Q, r). Finally, let E2 denote

the subspace of E1 generated by the elements d(y i ) for all
0 ≤ i ≤ d − 1.

Theorem

We have isomorphisms:

H1
rig(U) ∼= E/E2, H1

rig(X − x−1(∞)) ∼= E1/E2.
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Some remarks

This allows us to compute Z (X − x−1(∞),T ), from which
Z (X ,T ) can be easily obtained.

All assumptions but the first one can be removed by
temporarily changing from [y0, · · · , yd−1] to another basis if
equations for X are known.

The way we compute in the cohomology is inspired by work of
Lauder (and his student Walker) on the so called fibration
method.
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An example

Hyperelliptic curve y2 = f (x) with f of degree 2g + 1.

∆(x) = r(x) = f (x).

(M/r)dx =

(
0 0

0 f ′(x)
2f (x)

)
dx

Finite exponents 0, 1/2 and infinite ones −(2g + 1)/2, 0.

E = {(u0(x) + u1(x)y)dx/y2}
E1 = {u1(x)ydx/y2}
E2 = {f ′(x)ydx/y2}

This gives the same basis for the cohomology as before.
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