◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counting points on (more general) curves

Jan Tuitman, KU Leuven

November 14, 2013

Zeta functions

Suppose that

- \mathbf{F}_q finite field of cardinality $q = p^n$.
- X/\mathbf{F}_q a smooth proper algebraic curve of genus g.

Recall that the zeta function of X is defined as

$$Z(X,T) = \exp(\sum_{i=1}^{\infty} |X(\mathbf{F}_{q^i})| \frac{T^i}{i}).$$

It follows from the Weil conjectures that Z(X, T) is of the form

$$\frac{\chi(T)}{(1-T)(1-qT)},$$

where $\chi(T) \in \mathbf{Z}[T]$ of degree 2g, with inverse roots that

- have absolute value $q^{\frac{1}{2}}$
- are permuted by the map $x \rightarrow q/x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computing zeta functions

Problem

How to compute Z(X, T) (efficiently)?

Note that this problem has cryptographic applications when X is a (hyper)elliptic curve.

Theorem

Let F_p denote the pth power Frobenius map and $H^*_{rig}(X)$ the rigid cohomology. Then

$$\chi(T) = \mathsf{det}(1 - T \operatorname{\mathsf{F}}^n_p | H^1_{\operatorname{rig}}(X)).$$

Hyperelliptic curves

Suppose that $p \neq 2$. A hyperelliptic curve X is given by an (affine) equation of the form

$$y^2=Q(x),$$

with $Q \in \mathbf{F}_q[x]$ a monic polynomial of degree 2g + 1 with gcd(Q,Q') = 1.

To define $H^1_{rig}(X)$, we start by lifting Q to characteristic 0: Let $Q \in \mathbf{Z}_q[x]$ denote a monic lift of Q of degree 2g + 1.

・ロト・日本・モート モー うへぐ

Some rings

We define a ring $\mathbf{Z}_q \langle x, y, y^{-1} \rangle^{\dagger}$ of overconvergent functions:

$$\{\sum_{i=0}^{\infty}\sum_{j=-\infty}^{\infty}a_{i,j}x^{i}y^{j}|a_{i,j}\in\mathbf{Z}_{q},\exists \rho>1\colon \lim_{i+|j|\to\infty}|a_{i,j}|\rho^{i}=0\}.$$

Moreover, we denote

$$\begin{split} \mathcal{R} &= \mathbf{Z}_q[x, y, y^{-1}]/(\mathcal{Q}), \quad \mathcal{R}^{\dagger} = \mathbf{Z}_q \langle x, y, y^{-1} \rangle^{\dagger}/(\mathcal{Q}) \\ \\ \mathcal{U} &= \operatorname{Spec} \mathcal{R}, \qquad \qquad \mathbb{U} = \mathcal{U} \otimes \mathbf{Q}_q, \qquad \qquad \mathcal{U} = \mathcal{U} \otimes \mathbf{F}_q \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rigid cohomology

We define the overconvergent Kähler differentials

$$\Omega^1_{\mathcal{R}^\dagger} = rac{R^\dagger dx \oplus R^\dagger dy}{(2ydy - \mathcal{Q}' dx)}$$

and the overconvergent De Rham complex

$$\Omega^{ullet}_{\mathcal{R}^{\dagger}}: \quad 0 \longrightarrow \mathcal{R}^{\dagger} \xrightarrow{d} \Omega_{\mathcal{R}^{\dagger}} \longrightarrow 0.$$

We then have

$$H^1_{\mathrm{rig}}(U) = H^1(\Omega^ullet_{\mathcal{R}^\dagger}\otimes \mathbf{Q}_q) = \mathrm{coker}(d)\otimes \mathbf{Q}_q.$$

Frobenius lift

The *p*th power Frobenius map on $\mathcal{R} \otimes \mathbf{F}_q$ can be lifted to \mathcal{R} .

If $\sigma \in Gal(\mathbf{Q}_q/\mathbf{Q}_p)$ denotes the unique lift of the *p*th power Frobenius map on \mathbf{F}_q , then

$$F_p(y)^2 = \mathcal{Q}^{\sigma}(F_p(x)).$$

So we define

$$\begin{split} F_{p}(x) &= x^{p}, \\ F_{p}(y) &= \mathcal{Q}^{\sigma}(x^{p})^{\frac{1}{2}} = y^{p} \Big(1 + \frac{\mathcal{Q}^{\sigma}(x^{p}) - \mathcal{Q}(x)^{p}}{y^{2p}} \Big)^{\frac{1}{2}} \end{split}$$

The square root can be computed efficiently by Hensel lifting.

Computing in the cohomology

We can write any 1-form $\omega\in\Omega_{\mathcal{R}^{\dagger}}$ as

$$\sum_{i=-\infty}^{\infty}\frac{a_i(x)}{y^i}dx,$$

with $a_i \in \mathbf{Z}_q[x]$ of degree < 2g + 1 for all $i \in \mathbf{Z}$. Writing $B(x) = A_1(x)\mathcal{Q}(x) + A_2(x)\mathcal{Q}'(x)$, we have

$$B(x)\frac{dx}{y^{i}} \equiv \left(A_{1}(x) + \frac{2A_{2}'(x)}{(i-2)}\right)\frac{dx}{y^{i-2}}.$$

This allows us to eliminate all terms with i > 2. We can do something similar for the terms with $i \le 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A basis for the cohomology

As a consequence, one can show that:

Theorem

A basis for $H^1_{rig}(U)$ is given by

$$[x^0\frac{dx}{y},\ldots,x^{2g-1}\frac{dx}{y},x^0\frac{dx}{y^2},\ldots,x^{2g}\frac{dx}{y^2}]$$

and the first 2g vectors form a basis for the subspace $H^1_{rig}(X)$.

Kedlaya's algorithm

A rough sketch:

- Compute $F_p(\frac{1}{y})$ and $F_p(x^i \frac{dx}{y}) = px^{ip+p-1}F_p(\frac{1}{y})dx$.
- Reduce back to the basis [x⁰ dx/y,..., x^{2g-1} dx/y] and read off the matrix A of F_p on H¹_{rig}(X).
- Compute the matrix $A^{(n)} = A^{\sigma^{n-1}} \dots A^{\sigma} A$ of F_{ρ}^{n} on $H^{1}_{rig}(X)$.
- Determine $\chi(T) = \det(1 \mathsf{F}_p^n T | H^1_{\mathrm{rig}}(X)).$

The polynomial $\chi(T) = \sum_{i=0}^{2g} \chi_i T^i \in \mathbf{Z}[T]$ is determined exactly if known to high enough *p*-adic precision, since there are explicit bounds for the size of its coefficients.

More general curves

We let X/\mathbf{F}_q denote the smooth projective curve given by the (affine) equation

$$Q(x,y) = y^d + Q_{d-1}(x)y^{d-1} + \ldots + Q_0 = 0,$$

where Q(x, y) is irreducible separable and $Q_i(x) \in \mathbf{F}_q[x]$ for all $0 \le i \le d-1$.

We let $Q \in \mathbf{Z}_q[x]$ denote a lift of Q that is monic of degree d in y.

Proposition

The $\mathbf{Z}_q[x]$ -module $\mathbf{Z}_q[x, y]/(\mathcal{Q})$ is free with basis $[1, y, \dots, y^{d-1}]$.

Some notation

Definition

We let $\Delta(x) \in \mathbf{Z}_q[x]$ denote the resultant of Q and $\frac{\partial Q}{\partial y}$ with respect to the variable y and $r(x) \in \mathbf{Z}_q[x]$ the squarefree polynomial $r = \Delta/(\operatorname{gcd}(\Delta, \frac{d\Delta}{dx}))$.

Note that $\Delta(x) \neq 0 \pmod{p}$ since the map x is separable.

Definition

$$\begin{split} \mathcal{S} &= \mathbf{Z}_q[x, \frac{1}{r}], \qquad \qquad \mathcal{R} = \mathbf{Z}_q[x, \frac{1}{r}, y]/(\mathcal{Q}), \\ \mathcal{S}^{\dagger} &= \mathbf{Z}_q\langle x, \frac{1}{r} \rangle^{\dagger}, \qquad \qquad \mathcal{R}^{\dagger} = \mathbf{Z}_q\langle x, \frac{1}{r}, y \rangle^{\dagger}/(\mathcal{Q}), \end{split}$$

and write $\mathcal{V} = \operatorname{Spec} S$, $\mathcal{U} = \operatorname{Spec} \mathcal{R}$, so that x defines a finite étale morphism from \mathcal{U} to \mathcal{V} .

The following assumption is essential:

Assumption

- There exists a smooth proper curve X over Z_q and a smooth relative divisor D_X on X such that U = X \ D_X. We write X = X ⊗ Q_q for the generic fibre of X.
- *There exists a smooth relative divisor* D_{P1} on P¹_{Z_q} such that
 V = P¹_{Z_q} \ D_{P1}.

Definition

We let $U = \mathcal{U} \otimes_{\mathbf{Z}_q} \mathbf{F}_q$, $V = \mathcal{V} \otimes_{\mathbf{Z}_q} \mathbf{F}_q$ denote the special fibres and $\mathbb{U} = \mathcal{U} \otimes_{\mathbf{Z}_q} \mathbf{Q}_q$, $\mathbb{V} = \mathcal{V} \otimes_{\mathbf{Z}_q} \mathbf{Q}_q$ the generic fibres of \mathcal{U} and \mathcal{V} , respectively.

For convenience, we assume:

Assumption

The zero locus of Q in $\mathbf{A}^2_{\mathbf{Z}_q}$ is smooth over \mathbf{Z}_q .

Proposition

The element $s = r / \frac{\partial Q}{\partial y}$ of $\mathbf{Q}_q(x, y)$ is contained in $\mathbf{Z}_q[x, y]/(Q)$.

Sketch of the proof: $\Delta/\frac{\partial Q}{\partial y}$ is contained in $\mathbb{Z}_q[x, y]/(Q)$ by the definition of Δ as the determinant of the Sylvester matrix. By the assumption, $[1, y, \ldots, y^{d-1}]$ is an integral basis of $\mathbb{Q}_q[x, y]/(Q)$ over $\mathbb{Q}_q[x]$. So for any monic irreducible polynomial $\pi \in \mathbb{Z}_q[x]$, the element $\frac{\partial Q}{\partial y}/\pi$ of $\mathbb{Q}_q(x, y)$ is not integral at (π) because of the term $(d/\pi)y^{d-1}$, hence its inverse $\pi/\frac{\partial Q}{\partial y}$ is integral (even zero) at (π) . Since $\prod_{\pi \mid \Delta} \pi = r$, this proves the Proposition.

(ロ)、(型)、(E)、(E)、 E) のQの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Frobenius lift

Define sequences $(\alpha_i)_{i\geq 0}$, $(\beta_i)_{i\geq 0}$, with $\alpha_i \in S^{\dagger}$ and $\beta_i \in \mathcal{R}^{\dagger}$, by the following recursion:

$$\begin{aligned} \alpha_0 &= \frac{1}{r^p}, \\ \beta_0 &= y^p, \\ \alpha_{i+1} &= \alpha_i (2 - \alpha_i r^\sigma(x^p)) \qquad (\text{mod } p^{2^{i+1}}), \\ \beta_{i+1} &= \beta_i - \mathcal{Q}^\sigma(x^p, \beta_i) s^\sigma(x^p, \beta_i) \alpha_i \qquad (\text{mod } p^{2^{i+1}}). \end{aligned}$$

Then one easily checks that the σ -semilinear ringhomomorphism $F_p: \mathcal{R}^{\dagger} \to \mathcal{R}^{\dagger}$ defined by

$$F_p(x) = x^p$$
, $F_p(\frac{1}{r}) = \lim_{i \to \infty} \alpha_i$, $F_p(y) = \lim_{i \to \infty} \beta_i$,

is a Frobenius lift.

The connection matrix

Definition

Let $M \in M_{d \times d}(\mathbf{Z}_q[x])$ denote the matrix for which

$$d(y^{j}) = jy^{j-1}dy = -jy^{j-1}\frac{s}{r}\frac{\partial Q}{\partial x}dx = \sum_{i=0}^{d-1} \left(\frac{M_{ij}}{r}\right)y^{i}dx$$

for all $0 \leq j \leq d-1$ as 1-forms on \mathcal{U} .

For convenience, we assume:

Assumption

 $\deg(M) < \deg(r)$, or equivalently (M/r)dx has at most a simple pole at $x = \infty$.

The exponents

Definition

Let $x_0 \in \mathbf{P}^1(\mathbf{\bar{Q}}_q)$ be a geometric point $\neq \infty$. The exponents of (M/r)dx at x_0 are defined as the eigenvalues of the residue matrix $(x - x_0)(M/r)|_{x=x_0}$. Moreover, the exponents of (M/r)dx at ∞ are defined as its exponents at t = 0, after substituting x = 1/t.

Proposition

The exponents of (M/r)dx at any point $x_0 \in \mathbf{P}^1(\bar{\mathbf{Q}}_q)$ are elements of $\mathbf{Q} \cap \mathbf{Z}_p$. For $x_0 \neq \infty$ they are contained in the interval [0,1)and for $x_0 = \infty$ in the interval $[(d-1)\mu, 0]$, where

$$\mu = \min\{\frac{\operatorname{ord}_{P}(y)}{e_{P}} \colon P \in x^{-1}(\infty)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Effective convergence bounds

Proposition

Let $N \in \mathbf{N}$. Then modulo p^N :

- $F_p(1/r)$ is congruent to $\sum_{i=p}^{pN} \frac{\rho_i(x)}{r^i}$, where for all $p \le i \le pN$ the polynomial $\rho_i \in \mathbf{Z}_q[x]$ satisfies $\deg(\rho_i) < \deg(r)$.
- **2** $F_p(y^i)$ is congruent to $\sum_{j=0}^{d-1} \phi_{i,j}(x)y^j$, where

$$\phi_{i,j} = \sum_{k=0}^{p(N-1)+1} \frac{\phi_{i,j,k}(x)}{r^k},$$

for all $0 \le i, j \le d-1$ and $\phi_{i,j,k} \in \mathbb{Z}_q[x]$ satisfies $\deg(\phi_{i,j,0}) < p(d-1)(-\mu)$ and $\deg(\phi_{i,j,k}) < \deg(r)$, for all $0 \le i, j \le d-1$ and $1 \le k \le p(N-1)+1$.

Sketch of the proof: Effective bounds for Frobenius structures on connections, T. and Kedlaya, 2013.

・ロト・雪 ・ 山 ・ 山 ・ 小田 ・ 小田 ・

Computing in the cohomology I

Proposition

For all $\ell \in \mathbf{N}$ and every vector $w \in \mathbf{Q}_q[x]^{\oplus d}$, there exist (unique) vectors $u, v \in \mathbf{Q}_q[x]^{\oplus d}$ with $\deg(v) < \deg(r)$, such that

$$\frac{\sum_{i=0}^{d-1} w_i y^i}{r^{\ell}} \frac{dx}{r} = d\left(\frac{\sum_{i=0}^{d-1} v_i y^i}{r^{\ell}}\right) + \frac{\sum_{i=0}^{d-1} u_i y^i}{r^{\ell-1}} \frac{dx}{r}$$

as 1-forms on \mathbb{U} .

Sketch of the proof: r is separable, so r' is invertible in $\mathbf{Q}_q[x]/(r)$. v has to satisfy $\left(\frac{M}{r'} - \ell I\right) v \equiv \frac{u}{r'} \pmod{r}$ (mod r) over $\mathbf{Q}_q[x]/(r)$. The finite exponents of (M/r)dx are contained in [0, 1), hence $\det(\ell I - M/r')$ is invertible in $\mathbf{Q}_q[x]/(r)$, so there is a unique solution v. We now take

$$u = \frac{w - \left(M - \ell r' I\right)v}{r} - \frac{dv}{dx}.$$

Computing in the cohomology II

Proposition

For every vector $w \in \mathbf{Q}_q[x]^{\oplus d}$ with $\deg(w) \ge \deg(r)$, there exist vectors $u, v \in \mathbf{Q}_q[x]^{\oplus d}$ with $\deg(u) < \deg(w)$, such that

$$(\sum_{i=0}^{d-1} w_i y^i) \frac{dx}{r} = d(\sum_{i=0}^{d-1} v_i y^i) + (\sum_{i=0}^{d-1} u_i y^i) \frac{dx}{r}$$

as 1-forms on \mathbb{U} .

Sketch of the proof: We denote t = 1/x. Since $\deg(M) < \deg(r)$, we can expand $\frac{M}{r}dx = \left(\frac{M-1}{t} + M_0 + \dots\right)dt$, where $M_i \in M_{d \times d}(\mathbf{Q}_q)$ for all *i*. Similarly, if $k = \deg(w) - \deg(r) + 2$, then we can write $\left(\sum_{i=0}^{d-1} w_i y^i\right) \frac{dx}{r} = \left(\frac{b-k}{t^k} + \frac{b-(k-1)}{t^{k-1}} + \dots\right)dt$, where $b_i \in (\mathbf{Q}_q)^{\oplus d}$ for all *i*. The infinite exponents of (M/r)dx are ≤ 0 , so the linear system $(M_{-1} - (k-1)I)c = b_{-k}$ has a unique solution $c \in (\mathbf{Q}_q)^{\oplus d}$. We now take $v = cx^{k-1}$ and $u = w - (Mv + r\frac{dv}{dv})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

Every class in $H^1_{rig}(U)$ is represented by a 1-form of the form

$$(\sum_{i=0}^{d-1} u_i(x)y^i)\frac{dx}{r},$$

where $u_i \in \mathbf{Q}_q[x]$ satisfies $\deg(u_i) < \deg(r)$ for all $0 \le i \le d-1$.

Sketch of the proof: By a comparison theorem of Baldassarri and Chiarellotto, we can restrict to classes that lie in $H_{dR}^1(\mathbb{U})$. Using the previous two propositions (both repeatedly), such a class can be reduced to the required form.

Precision loss I

Proposition

Let $\omega \in \Omega^1_{\mathcal{U}}$ be of the form

$$\omega = \frac{\sum_{i=0}^{d-1} w_i(x) y^i}{r^{\ell}} \frac{dx}{r},$$

where $\ell \in \mathbf{N}$ and $w_i \in \mathbf{Z}_q[x]$ satisfies $\deg(w_i) < \deg(r)$ for all $0 \le i \le d-1$. We define $e_0 = \max\{e_P | P \in \mathcal{X} \setminus \mathcal{U}, x(P) \ne \infty\}$. If we represent the class of ω in $H^1_{rig}(U)$ as in the Theorem using the Proposition, then

$$p^{\lfloor \log_p(\ell e_0)
floor} u_i(x) \in \mathsf{Z}_q[x]$$

for all $0 \leq i \leq d - 1$.

Precision loss II

Proposition

Let $\omega \in \Omega^1_{\mathcal{U}}$ be of the form

$$\omega = (\sum_{i=0}^{d-1} w_i(x) y^i) \frac{dx}{r},$$

where $w_i \in \mathbf{Z}_q[x]$ for all $0 \le i \le d-1$ and $\deg(w_i) \ge \deg(r)$ for some $0 \le i \le d-1$. We define $m = (\deg(w) - \deg(r) + 1)$ and $e_{\infty} = \max\{e_P | P \in \mathcal{X} \setminus \mathcal{U}, x(P) = \infty\}$. If we represent the class of ω in $H^1_{rig}(U)$ as in the Theorem using the Proposition, then

$$p^{\lfloor \log_p((m-(d-1)\mu)e_\infty) \rfloor} u_i(x) \in \mathsf{Z}_q[x]$$

for all $0 \leq i \leq d-1$.

A basis for the cohomology

First, let *E* denote the \mathbf{Q}_{q} -vector space of 1-forms

$$\omega = \left(\sum_{i=0}^{d-1} u_i(x) y^i\right) \frac{dx}{r},$$

where $u_i \in \mathbf{Q}_q[x]$ satisfies $\deg(u_i) < \deg(r)$ for all $0 \le i \le d-1$. Now, let E_1 denote the kernel of the map that sends $\omega \in E$ to the element $\frac{\partial Q}{\partial y} \sum_{i=0}^{d-1} u_i y^i$ of $\mathbf{Q}_q[x, y]/(Q, r)$. Finally, let E_2 denote the subspace of E_1 generated by the elements $d(y^i)$ for all $0 \le i \le d-1$.

Theorem

We have isomorphisms:

$$H^1_{rig}(U) \cong E/E_2, \qquad H^1_{rig}(X-x^{-1}(\infty)) \cong E_1/E_2$$

200

Some remarks

- This allows us to compute $Z(X x^{-1}(\infty), T)$, from which Z(X, T) can be easily obtained.
- All assumptions but the first one can be removed by temporarily changing from [y⁰, ..., y^{d-1}] to another basis if equations for X are known.
- The way we compute in the cohomology is inspired by work of Lauder (and his student Walker) on the so called fibration method.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An example

Hyperelliptic curve
$$y^2 = f(x)$$
 with f of degree $2g + 1$.

$$\Delta(x) = r(x) = f(x).$$

$$(M/r)dx = \begin{pmatrix} 0 & 0 \\ 0 & \frac{f'(x)}{2f(x)} \end{pmatrix} dx$$

Finite exponents 0, 1/2 and infinite ones -(2g+1)/2, 0.

$$E = \{(u_0(x) + u_1(x)y)dx/y^2\}$$

$$E_1 = \{u_1(x)ydx/y^2\}$$

$$E_2 = \{f'(x)ydx/y^2\}$$

This gives the same basis for the cohomology as before.