# Counting points on (more general) curves 

Jan Tuitman, KU Leuven

November 14, 2013

## Zeta functions

Suppose that

- $\mathbf{F}_{q}$ finite field of cardinality $q=p^{n}$.
- $X / \mathbf{F}_{q}$ a smooth proper algebraic curve of genus $g$.

Recall that the zeta function of $X$ is defined as

$$
Z(X, T)=\exp \left(\sum_{i=1}^{\infty}\left|X\left(\mathbf{F}_{q^{i}}\right)\right| \frac{T^{i}}{i}\right)
$$

It follows from the Weil conjectures that $Z(X, T)$ is of the form

$$
\frac{\chi(T)}{(1-T)(1-q T)},
$$

where $\chi(T) \in \mathbf{Z}[T]$ of degree $2 g$, with inverse roots that

- have absolute value $q^{\frac{1}{2}}$
- are permuted by the map $x \rightarrow q / x$.


## Computing zeta functions

## Problem

How to compute $Z(X, T)$ (efficiently)?
Note that this problem has cryptographic applications when $X$ is a (hyper)elliptic curve.

## Theorem

Let $\mathrm{F}_{p}$ denote the pth power Frobenius map and $H_{\text {rig }}^{*}(X)$ the rigid cohomology. Then

$$
\chi(T)=\operatorname{det}\left(1-T F_{p}^{n} \mid H_{r i g}^{1}(X)\right)
$$

## Hyperelliptic curves

Suppose that $p \neq 2$. A hyperelliptic curve $X$ is given by an (affine) equation of the form

$$
y^{2}=Q(x)
$$

with $Q \in \mathbf{F}_{q}[x]$ a monic polynomial of degree $2 g+1$ with $\operatorname{gcd}\left(Q, Q^{\prime}\right)=1$.

To define $H_{\text {rig }}^{1}(X)$, we start by lifting $Q$ to characteristic 0 :
Let $\mathcal{Q} \in \mathbf{Z}_{q}[x]$ denote a monic lift of $Q$ of degree $2 g+1$.

## Some rings

We define a ring $\mathbf{Z}_{q}\left\langle x, y, y^{-1}\right\rangle^{\dagger}$ of overconvergent functions:

$$
\left\{\sum_{i=0}^{\infty} \sum_{j=-\infty}^{\infty} a_{i, j} x^{i} y^{j}\left|a_{i, j} \in \mathbf{Z}_{q}, \exists \rho>1: \lim _{i+|j| \rightarrow \infty}\right| a_{i, j} \mid \rho^{i}=0\right\} .
$$

Moreover, we denote

$$
\begin{array}{lll}
\mathcal{R}=\mathbf{Z}_{q}\left[x, y, y^{-1}\right] /(\mathcal{Q}), & \mathcal{R}^{\dagger}=\mathbf{Z}_{q}\left\langle x, y, y^{-1}\right\rangle^{\dagger} /(\mathcal{Q}) & \\
\mathcal{U}=\operatorname{Spec} \mathcal{R}, & \mathbb{U}=\mathcal{U} \otimes \mathbf{Q}_{q}, & U=\mathcal{U} \otimes \mathbf{F}_{q} .
\end{array}
$$

## Rigid cohomology

We define the overconvergent Kähler differentials

$$
\Omega_{\mathcal{R}^{\dagger}}^{1}=\frac{R^{\dagger} d x \oplus R^{\dagger} d y}{\left(2 y d y-\mathcal{Q}^{\prime} d x\right)}
$$

and the overconvergent De Rham complex

$$
\Omega_{\mathcal{R}^{\dagger}}^{\bullet}: 0 \longrightarrow \mathcal{R}^{\dagger} \xrightarrow{d} \Omega_{\mathcal{R}^{\dagger}} \longrightarrow 0 .
$$

We then have

$$
H_{\mathrm{rig}}^{1}(U)=H^{1}\left(\Omega_{\mathcal{R}^{\dagger}}^{\bullet} \otimes \mathbf{Q}_{q}\right)=\operatorname{coker}(d) \otimes \mathbf{Q}_{q}
$$

## Frobenius lift

The $p$ th power Frobenius map on $\mathcal{R} \otimes \mathbf{F}_{q}$ can be lifted to $\mathcal{R}$.
If $\sigma \in \operatorname{Gal}\left(\mathbf{Q}_{q} / \mathbf{Q}_{p}\right)$ denotes the unique lift of the $p$ th power
Frobenius map on $\mathbf{F}_{q}$, then

$$
F_{p}(y)^{2}=\mathcal{Q}^{\sigma}\left(F_{p}(x)\right)
$$

So we define

$$
\begin{aligned}
& F_{p}(x)=x^{p} \\
& F_{p}(y)=\mathcal{Q}^{\sigma}\left(x^{p}\right)^{\frac{1}{2}}=y^{p}\left(1+\frac{\mathcal{Q}^{\sigma}\left(x^{p}\right)-\mathcal{Q}(x)^{p}}{y^{2 p}}\right)^{\frac{1}{2}}
\end{aligned}
$$

The square root can be computed efficiently by Hensel lifting.

## Computing in the cohomology

We can write any 1-form $\omega \in \Omega_{\mathcal{R}^{\dagger}}$ as

$$
\sum_{i=-\infty}^{\infty} \frac{a_{i}(x)}{y^{i}} d x
$$

with $a_{i} \in \mathbf{Z}_{q}[x]$ of degree $<2 g+1$ for all $i \in \mathbf{Z}$. Writing $B(x)=A_{1}(x) \mathcal{Q}(x)+A_{2}(x) Q^{\prime}(x)$, we have

$$
B(x) \frac{d x}{y^{i}} \equiv\left(A_{1}(x)+\frac{2 A_{2}^{\prime}(x)}{(i-2)}\right) \frac{d x}{y^{i-2}} .
$$

This allows us to eliminate all terms with $i>2$. We can do something similar for the terms with $i \leq 0$.

## A basis for the cohomology

As a consequence, one can show that:

## Theorem

A basis for $H_{\text {rig }}^{1}(U)$ is given by

$$
\left[x^{0} \frac{d x}{y}, \ldots, x^{2 g-1} \frac{d x}{y}, x^{0} \frac{d x}{y^{2}}, \ldots, x^{2 g} \frac{d x}{y^{2}}\right]
$$

and the first $2 g$ vectors form a basis for the subspace $H_{\text {rig }}^{1}(X)$.

## Kedlaya's algorithm

A rough sketch:

- Compute $F_{p}\left(\frac{1}{y}\right)$ and $F_{p}\left(x^{i} \frac{d x}{y}\right)=p x^{i p+p-1} F_{p}\left(\frac{1}{y}\right) d x$.
- Reduce back to the basis $\left[x^{0} \frac{d x}{y}, \ldots, x^{2 g-1} \frac{d x}{y}\right]$ and read off the matrix $A$ of $\mathrm{F}_{p}$ on $H_{\text {rig }}^{1}(X)$.
- Compute the matrix $A^{(n)}=A^{\sigma^{n-1}} \ldots A^{\sigma} A$ of $\mathrm{F}_{p}^{n}$ on $H_{\text {rig }}^{1}(X)$.
- Determine $\chi(T)=\operatorname{det}\left(1-\mathrm{F}_{p}^{n} T \mid H_{\text {rig }}^{1}(X)\right)$.

The polynomial $\chi(T)=\sum_{i=0}^{2 g} \chi_{i} T^{i} \in \mathbf{Z}[T]$ is determined exactly if known to high enough $p$-adic precision, since there are explicit bounds for the size of its coefficients.

## More general curves

We let $X / \mathbf{F}_{q}$ denote the smooth projective curve given by the (affine) equation

$$
Q(x, y)=y^{d}+Q_{d-1}(x) y^{d-1}+\ldots+Q_{0}=0
$$

where $Q(x, y)$ is irreducible separable and $Q_{i}(x) \in \mathbf{F}_{q}[x]$ for all $0 \leq i \leq d-1$.

We let $\mathcal{Q} \in \mathbf{Z}_{q}[x]$ denote a lift of $Q$ that is monic of degree $d$ in $y$.

## Proposition

The $\mathbf{Z}_{q}[x]$-module $\mathbf{Z}_{q}[x, y] /(\mathcal{Q})$ is free with basis $\left[1, y, \ldots, y^{d-1}\right]$.

## Some notation

## Definition

We let $\Delta(x) \in \mathbf{Z}_{q}[x]$ denote the resultant of $\mathcal{Q}$ and $\frac{\partial \mathcal{Q}}{\partial y}$ with respect to the variable $y$ and $r(x) \in \mathbf{Z}_{q}[x]$ the squarefree polynomial $r=\Delta /\left(\operatorname{gcd}\left(\Delta, \frac{d \Delta}{d x}\right)\right)$.

Note that $\Delta(x) \neq 0(\bmod p)$ since the map $x$ is separable.

## Definition

$$
\begin{aligned}
\mathcal{S} & =\mathbf{Z}_{q}\left[x, \frac{1}{r}\right], & \mathcal{R} & =\mathbf{Z}_{q}\left[x, \frac{1}{r}, y\right] /(\mathcal{Q}) \\
\mathcal{S}^{\dagger} & =\mathbf{Z}_{q}\left\langle x, \frac{1}{r}\right\rangle^{\dagger}, & \mathcal{R}^{\dagger} & =\mathbf{Z}_{q}\left\langle x, \frac{1}{r}, y\right\rangle^{\dagger} /(\mathcal{Q})
\end{aligned}
$$

and write $\mathcal{V}=\operatorname{Spec} \mathcal{S}, \mathcal{U}=\operatorname{Spec} \mathcal{R}$, so that $x$ defines a finite étale morphism from $\mathcal{U}$ to $\mathcal{V}$.

The following assumption is essential:

## Assumption

(1) There exists a smooth proper curve $\mathcal{X}$ over $\mathbf{Z}_{q}$ and a smooth relative divisor $\mathcal{D}_{\mathcal{X}}$ on $\mathcal{X}$ such that $\mathcal{U}=\mathcal{X} \backslash \mathcal{D}_{\mathcal{X}}$. We write $\mathbb{X}=\mathcal{X} \otimes \mathbf{Q}_{q}$ for the generic fibre of $\mathcal{X}$.
(2) There exists a smooth relative divisor $\mathcal{D}_{\mathbf{P}^{1}}$ on $\mathbf{P}_{\mathbf{Z}_{q}}^{1}$ such that $\mathcal{V}=\mathbf{P}_{\mathbf{Z}_{q}}^{1} \backslash \mathcal{D}_{\mathbf{P}^{1}}$.

## Definition

We let $U=\mathcal{U} \otimes_{\mathbf{z}_{q}} \mathbf{F}_{q}, V=\mathcal{V} \otimes \mathbf{z}_{q} \mathbf{F}_{q}$ denote the special fibres and $\mathbb{U}=\mathcal{U} \otimes \mathbf{z}_{q} \mathbf{Q}_{q}, \mathbb{V}=\mathcal{V} \otimes_{\mathbf{z}_{q}} \mathbf{Q}_{q}$ the generic fibres of $\mathcal{U}$ and $\mathcal{V}$, respectively.

For convenience, we assume:

## Assumption

The zero locus of $\mathcal{Q}$ in $\mathbf{A}_{\mathbf{Z}_{q}}^{2}$ is smooth over $\mathbf{Z}_{q}$.

## Proposition

The element $s=r / \frac{\partial \mathcal{Q}}{\partial y}$ of $\mathbf{Q}_{q}(x, y)$ is contained in $\mathbf{Z}_{q}[x, y] /(\mathcal{Q})$.

Sketch of the proof: $\Delta / \frac{\partial \mathcal{Q}}{\partial y}$ is contained in $\mathbf{Z}_{q}[x, y] /(\mathcal{Q})$ by the definition of $\Delta$ as the determinant of the Sylvester matrix. By the assumption, $\left[1, y, \ldots, y^{d-1}\right]$ is an integral basis of $\mathbf{Q}_{q}[x, y] /(\mathcal{Q})$ over $\mathbf{Q}_{q}[x]$. So for any monic irreducible polynomial $\pi \in \mathbf{Z}_{q}[x]$, the element $\frac{\partial \mathcal{Q}}{\partial y} / \pi$ of $\mathbf{Q}_{q}(x, y)$ is not integral at ( $\pi$ ) because of the term $(d / \pi) y^{d-1}$, hence its inverse $\pi / \frac{\partial \mathcal{Q}}{\partial y}$ is integral (even zero) at $(\pi)$. Since $\prod_{\pi \mid \Delta} \pi=r$, this proves the Proposition.

## Frobenius lift

Define sequences $\left(\alpha_{i}\right)_{i \geq 0},\left(\beta_{i}\right)_{i \geq 0}$, with $\alpha_{i} \in S^{\dagger}$ and $\beta_{i} \in \mathcal{R}^{\dagger}$, by the following recursion:

$$
\begin{array}{ll}
\alpha_{0}=\frac{1}{r^{p}}, \\
\beta_{0}=y^{p}, & \\
\alpha_{i+1}=\alpha_{i}\left(2-\alpha_{i} r^{\sigma}\left(x^{p}\right)\right) & \left(\bmod p^{2^{i+1}}\right), \\
\beta_{i+1}=\beta_{i}-\mathcal{Q}^{\sigma}\left(x^{p}, \beta_{i}\right) s^{\sigma}\left(x^{p}, \beta_{i}\right) \alpha_{i} & \left(\bmod p^{2^{i+1}}\right) .
\end{array}
$$

Then one easily checks that the $\sigma$-semilinear ringhomomorphism $\mathrm{F}_{p}: \mathcal{R}^{\dagger} \rightarrow \mathcal{R}^{\dagger}$ defined by

$$
\mathrm{F}_{p}(x)=x^{p}, \quad \mathrm{~F}_{p}\left(\frac{1}{r}\right)=\lim _{i \rightarrow \infty} \alpha_{i}, \quad \mathrm{~F}_{p}(y)=\lim _{i \rightarrow \infty} \beta_{i}
$$

is a Frobenius lift.

## The connection matrix

## Definition

Let $M \in M_{d \times d}\left(\mathbf{Z}_{q}[x]\right)$ denote the matrix for which

$$
d\left(y^{j}\right)=j y^{j-1} d y=-j y^{j-1} \frac{s}{r} \frac{\partial \mathcal{Q}}{\partial x} d x=\sum_{i=0}^{d-1}\left(\frac{M_{i j}}{r}\right) y^{i} d x
$$

for all $0 \leq j \leq d-1$ as 1 -forms on $\mathcal{U}$.
For convenience, we assume:

## Assumption

$\operatorname{deg}(M)<\operatorname{deg}(r)$, or equivalently $(M / r) d x$ has at most a simple pole at $x=\infty$.

## The exponents

## Definition

Let $x_{0} \in \mathbf{P}^{1}\left(\overline{\mathbf{Q}}_{q}\right)$ be a geometric point $\neq \infty$. The exponents of $(M / r) d x$ at $x_{0}$ are defined as the eigenvalues of the residue matrix $\left.\left(x-x_{0}\right)(M / r)\right|_{x=x_{0}}$. Moreover, the exponents of $(M / r) d x$ at $\infty$ are defined as its exponents at $t=0$, after substituting $x=1 / t$.

## Proposition

The exponents of $(M / r) d x$ at any point $x_{0} \in \mathbf{P}^{1}\left(\overline{\mathbf{Q}}_{q}\right)$ are elements of $\mathbf{Q} \cap \mathbf{Z}_{p}$. For $x_{0} \neq \infty$ they are contained in the interval $[0,1)$ and for $x_{0}=\infty$ in the interval $[(d-1) \mu, 0]$, where

$$
\mu=\min \left\{\frac{\operatorname{ord}_{P}(y)}{e_{P}}: P \in x^{-1}(\infty)\right\}
$$

## Effective convergence bounds

## Proposition

Let $N \in \mathbf{N}$. Then modulo $p^{N}$ :
(1) $\mathrm{F}_{p}(1 / r)$ is congruent to $\sum_{i=p}^{p N} \frac{\rho_{i}(x)}{r^{i}}$, where for all $p \leq i \leq p N$ the polynomial $\rho_{i} \in \mathbf{Z}_{q}[x]$ satisfies $\operatorname{deg}\left(\rho_{i}\right)<\operatorname{deg}(r)$.
(2) $\mathrm{F}_{p}\left(y^{i}\right)$ is congruent to $\sum_{j=0}^{d-1} \phi_{i, j}(x) y^{j}$, where

$$
\phi_{i, j}=\sum_{k=0}^{p(N-1)+1} \frac{\phi_{i, j, k}(x)}{r^{k}}
$$

for all $0 \leq i, j \leq d-1$ and $\phi_{i, j, k} \in \mathbf{Z}_{q}[x]$ satisfies $\operatorname{deg}\left(\phi_{i, j, 0}\right)<p(d-1)(-\mu)$ and $\operatorname{deg}\left(\phi_{i, j, k}\right)<\operatorname{deg}(r)$, for all $0 \leq i, j \leq d-1$ and $1 \leq k \leq p(N-1)+1$.

Sketch of the proof: Effective bounds for Frobenius structures on connections, T. and Kedlaya, 2013.

## Computing in the cohomology I

## Proposition

For all $\ell \in \mathbf{N}$ and every vector $w \in \mathbf{Q}_{q}[x]^{\oplus d}$, there exist (unique) vectors $u, v \in \mathbf{Q}_{q}[x]^{\oplus d}$ with $\operatorname{deg}(v)<\operatorname{deg}(r)$, such that

$$
\frac{\sum_{i=0}^{d-1} w_{i} y^{i}}{r^{\ell}} \frac{d x}{r}=d\left(\frac{\sum_{i=0}^{d-1} v_{i} y^{i}}{r^{\ell}}\right)+\frac{\sum_{i=0}^{d-1} u_{i} y^{i}}{r^{\ell-1}} \frac{d x}{r}
$$

## as 1 -forms on $\mathbb{U}$.

Sketch of the proof: $r$ is separable, so $r^{\prime}$ is invertible in $\mathbf{Q}_{q}[x] /(r) . v$ has to satisfy $\left(\frac{M}{r^{\prime}}-\ell l\right) v \equiv \frac{u}{r^{\prime}}(\bmod r)$ over $\mathbf{Q}_{q}[x] /(r)$. The finite exponents of $(M / r) d x$ are contained in $[0,1)$, hence $\operatorname{det}\left(\ell I-M / r^{\prime}\right)$ is invertible in $\mathbf{Q}_{q}[x] /(r)$, so there is a unique solution $v$. We now take

$$
u=\frac{w-\left(M-\ell r^{\prime} \iota\right) v}{r}-\frac{d v}{d x} .
$$

## Computing in the cohomology II

## Proposition

For every vector $w \in \mathbf{Q}_{q}[x]^{\oplus d}$ with $\operatorname{deg}(w) \geq \operatorname{deg}(r)$, there exist vectors $u, v \in \mathbf{Q}_{q}[x]^{\oplus d}$ with $\operatorname{deg}(u)<\operatorname{deg}(w)$, such that

$$
\left(\sum_{i=0}^{d-1} w_{i} y^{i}\right) \frac{d x}{r}=d\left(\sum_{i=0}^{d-1} v_{i} y^{i}\right)+\left(\sum_{i=0}^{d-1} u_{i} y^{i}\right) \frac{d x}{r}
$$

## as 1 -forms on $\mathbb{U}$.

Sketch of the proof: We denote $t=1 / x$. Since $\operatorname{deg}(M)<\operatorname{deg}(r)$, we can expand $\frac{M}{r} d x=\left(\frac{M_{-1}}{t}+M_{0}+\ldots\right) d t$, where $M_{i} \in M_{d \times d}\left(\mathbf{Q}_{q}\right)$ for all $i$. Similarly, if $k=\operatorname{deg}(w)-\operatorname{deg}(r)+2$, then we can write $\left(\sum_{i=0}^{d-1} w_{i} y^{i}\right) \frac{d x}{r}=\left(\frac{b_{-k}}{t^{k}}+\frac{b_{-(k-1)}}{t^{k-1}}+\ldots\right) d t$, where $b_{i} \in\left(\mathbf{Q}_{q}\right)^{\oplus d}$ for all $i$. The infinite exponents of $(M / r) d x$ are $\leq 0$, so the linear system $\left(M_{-1}-(k-1) I\right) c=b_{-k}$ has a unique solution $c \in\left(\mathbf{Q}_{q}\right)^{\oplus d}$. We now take

$$
v=c x^{k-1} \text { and } u=w-\left(M v+r \frac{d v}{d x}\right)
$$

## Theorem

Every class in $H_{\text {rig }}^{1}(U)$ is represented by a 1-form of the form

$$
\left(\sum_{i=0}^{d-1} u_{i}(x) y^{i}\right) \frac{d x}{r}
$$

where $u_{i} \in \mathbf{Q}_{q}[x]$ satisfies $\operatorname{deg}\left(u_{i}\right)<\operatorname{deg}(r)$ for all $0 \leq i \leq d-1$.

Sketch of the proof: By a comparison theorem of Baldassarri and Chiarellotto, we can restrict to classes that lie in $H_{\mathrm{dR}}^{1}(\mathbb{U})$. Using the previous two propositions (both repeatedly), such a class can be reduced to the required form.

## Precision loss I

## Proposition

Let $\omega \in \Omega_{\mathcal{U}}^{1}$ be of the form

$$
\omega=\frac{\sum_{i=0}^{d-1} w_{i}(x) y^{i}}{r^{\ell}} \frac{d x}{r},
$$

where $\ell \in \mathbf{N}$ and $w_{i} \in \mathbf{Z}_{q}[x]$ satisfies $\operatorname{deg}\left(w_{i}\right)<\operatorname{deg}(r)$ for all $0 \leq i \leq d-1$. We define $e_{0}=\max \left\{e_{P} \mid P \in \mathcal{X} \backslash \mathcal{U}, x(P) \neq \infty\right\}$. If we represent the class of $\omega$ in $H_{\text {rig }}^{1}(U)$ as in the Theorem using the Proposition, then

$$
p^{\left.\log _{p}\left(e_{0}\right)\right\rfloor} u_{i}(x) \in \mathbf{Z}_{q}[x]
$$

for all $0 \leq i \leq d-1$.

## Precision loss II

## Proposition

Let $\omega \in \Omega_{\mathcal{U}}^{1}$ be of the form

$$
\omega=\left(\sum_{i=0}^{d-1} w_{i}(x) y^{i}\right) \frac{d x}{r}
$$

where $w_{i} \in \mathbf{Z}_{q}[x]$ for all $0 \leq i \leq d-1$ and $\operatorname{deg}\left(w_{i}\right) \geq \operatorname{deg}(r)$ for some $0 \leq i \leq d-1$. We define $m=(\operatorname{deg}(w)-\operatorname{deg}(r)+1)$ and $e_{\infty}=\max \left\{e_{P} \mid P \in \mathcal{X} \backslash \mathcal{U}, x(P)=\infty\right\}$. If we represent the class of $\omega$ in $H_{\text {rig }}^{1}(U)$ as in the Theorem using the Proposition, then

$$
p^{\left\lfloor\log _{p}\left((m-(d-1) \mu) e_{\infty}\right)\right\rfloor} u_{i}(x) \in \mathbf{Z}_{q}[x]
$$

for all $0 \leq i \leq d-1$.

## A basis for the cohomology

First, let $E$ denote the $\mathbf{Q}_{q}$-vector space of 1-forms

$$
\omega=\left(\sum_{i=0}^{d-1} u_{i}(x) y^{i}\right) \frac{d x}{r}
$$

where $u_{i} \in \mathbf{Q}_{q}[x]$ satisfies $\operatorname{deg}\left(u_{i}\right)<\operatorname{deg}(r)$ for all $0 \leq i \leq d-1$. Now, let $E_{1}$ denote the kernel of the map that sends $\omega \in E$ to the element $\frac{\partial Q}{\partial y} \sum_{i=0}^{d-1} u_{i} y^{i}$ of $\mathbf{Q}_{q}[x, y] /(\mathcal{Q}, r)$. Finally, let $E_{2}$ denote the subspace of $E_{1}$ generated by the elements $d\left(y^{i}\right)$ for all $0 \leq i \leq d-1$.

## Theorem

We have isomorphisms:

$$
H_{r i g}^{1}(U) \cong E / E_{2}, \quad H_{r i g}^{1}\left(X-x^{-1}(\infty)\right) \cong E_{1} / E_{2}
$$

## Some remarks

- This allows us to compute $Z\left(X-x^{-1}(\infty), T\right)$, from which $Z(X, T)$ can be easily obtained.
- All assumptions but the first one can be removed by temporarily changing from $\left[y^{0}, \cdots, y^{d-1}\right]$ to another basis if equations for $\mathcal{X}$ are known.
- The way we compute in the cohomology is inspired by work of Lauder (and his student Walker) on the so called fibration method.


## An example

Hyperelliptic curve $y^{2}=f(x)$ with $f$ of degree $2 g+1$.
$\Delta(x)=r(x)=f(x)$.
$(M / r) d x=\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{f^{\prime}(x)}{2 f(x)}\end{array}\right) \mathrm{dx}$
Finite exponents $0,1 / 2$ and infinite ones $-(2 g+1) / 2,0$.

$$
\begin{aligned}
E & =\left\{\left(u_{0}(x)+u_{1}(x) y\right) d x / y^{2}\right\} \\
E_{1} & =\left\{u_{1}(x) y d x / y^{2}\right\} \\
E_{2} & =\left\{f^{\prime}(x) y d x / y^{2}\right\}
\end{aligned}
$$

This gives the same basis for the cohomology as before.

