
Computing Coleman integrals II.

Jan Tuitman

KU Leuven

June 29, 2017

Jan Tuitman KU Leuven Computing Coleman integrals II. June 29, 2017 1 / 16



Coleman integrals

Let:

X a smooth projective curve over Q with good reduction at p

points P1,P2 ∈ X (Qp)

ω meromorphic 1-form on X ⊗Qp

Coleman defined a path independent line integral∫ P2

P1

ω

which extends to integrals over D ∈ J(Qp), where J denotes the Jacobian of X
(above D = P2 − P1).

He used this integration theory to reformulate the Chabauty method for finding
rational points on (some) algebraic curves over Q.

Coleman defined his integrals using p-adic cohomology.
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p-adic cohomology

For a curve X over Zp one can define rigid cohomology spaces H i
rig(X ) with

i = 0, 1, 2 which are vector spaces over Qp that are functorial in (so only depend
on) X = X ⊗ Fp. Note that in particular the p-th power Frobenius map Φ of X
acts on the H i

rig(X ).

These p-adic cohomology spaces have similar properties as

`-adic (étale) cohomology (for ` 6= p)

crystalline cohomology

but are easier to define and compute.

By the Lefschetz formula for rigid cohomology we have that

Z (X ,T ) := exp

( ∞∑
i=1

|X (Fpi )|T
i

i

)
=

det(1− Φ T |H1
rig(X ))

(1− T )(1− pT )

So the zeta-function Z (X ,T ) can be computed from H1
rig(X ) as well.
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Computing p-adic cohomology

For hyperelliptic curves, H1
rig(X ) with the action of Frobenius can be computed

using Kedlaya’s algorithm (2001).

Extensions of Kedlaya’s algorithm were developed, but

they either still only applied to very special curves (Gaudry-Gurel for
superelliptic curves, for example),

or they were not practical and therefore not implemented (notably:
Castryck-Denef-Vercauteren for nondegenerate curves).

In 2014, I proposed an algorithm to compute H1
rig(X ) with the action of Frobenius

that is as practical as Kedlaya’s algorithm but applies to much more general
curves (essentially all curves, it turns out).

The main idea is to use a map x : X → P1 to represent functions and 1-forms on
X and then choose a particularly simple Frobenius lift that sends x to xp.
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Setup

We will now describe what we need to know about p-adic cohomology keeping
everything as explicit as possible.

Let X be a nonsingular projective curve over Q given by a (singular) plane model
Q(x , y) = 0 with Q(x , y) ∈ Z[x , y ] irreducible and monic in y .

dx , dy the degrees of Q in x , y .

∆(x) ∈ Z[x ] the discriminant of Q(x , y) w.r.t. y .

r(x) ∈ Z[x ] squarefree with the same roots as ∆(x).

Note that if r(x0) = 0 then one of the following two holds:

the plane model Q(x , y) has a singularity lying over x0,

the map x : X → P1 has a ramification point lying over x0.
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Integral bases

Let Q(X ) denote the function field of X .

Definition

We let W 0 ∈ Gldy (Q[x , 1/r ]) denote a matrix such that, if

b0
j =

dy−1∑
i=0

W 0
i+1,j+1y i

then [b0
0 , . . . , b0

dy−1] is an integral basis for Q(X ) over Q[x ].

Similary, we let W∞ ∈ Gldy (Q[x , 1/x , 1/r ]) denote a matrix such that
[b∞0 , . . . , b∞dy−1] is an integral basis for Q(X ) over Q[1/x ].

Example

When the plane model Q(x , y) = 0 is smooth, we can take W 0 = I since
[y0, . . . , ydy−1] is already an integral basis in that case.
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Good reduction at p

We need to impose some conditions on the prime p:

Definition

We say that the triple (Q,W 0,W∞) has good reduction at a prime number p, if
the following conditions hold:

the curve X has good reduction at p,

the divisors defined by r(x) on X and on P1 have good reduction at p, i.e.
the points in their support all have different reductions modulo p.

W 0 ∈ Gldy (Zp[x , 1/r ]),

W∞ ∈ Gldy (Zp[x , 1/x , 1/r ]),

Remark

(Q,W 0,W∞) has good reduction at all but a finite number of primes p and for
Chabauty one can vary p. However, for computing zeta functions p is fixed and it
can in general be hard to find a lift that has good reduction in the above sense.
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Overconvergent rings

From now on we assume that (Q,W 0,W∞) has good reduction at p.

Let:

V the Zariski open of P1
Zp

defined by the two conditions x 6=∞ and r(x) 6= 0,

U = x−1(V ) the Zariski open of X lying over V ,

We write

S† = Qp〈x , 1/r〉†, R† = Qp〈x , 1/r , y〉†/(Q).

where 〈〉† denotes weak completion, i.e.

Qp〈x1, . . . , xm〉† = {
∑
I

cI x
i1
1 . . . x im

m : radius of convergence > 1}.
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Lifting Frobenius

The p-the power Frobenius map Φ in characteristic p can be lifted to the rings
S† = Qp〈x , 1/r〉† and R† = Qp〈x , 1/r , y〉†/(Q) in the following way:

Set Φ(x) = xp.

Compute Φ(1/r) ∈ S† Hensel lifting Φ(1/r) = 1/r(xp), starting from 1/rp.

Compute Φ(y) ∈ R† Hensel lifting Q(xp,Φ(y)) = 0, starting from yp.

Remark

In practice it is important that Φ(x) = xp. For a Frobenius lift of this form to
exist, need that dQ

dy 6= 0 mod p. Therefore, we have removed the zeros of r(x)
from the curve.
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p-adic cohomology

Definition

The p-adic cohomology of U is the cohomology of the overconvergent de Rham

complex Ω•R† . More precisely, we have Ω1
R† = R†dx⊕R†dy

dQ and

H0
rig(U) = ker(d : R† → Ω1

R†),

H1
rig(U) = coker(d : R† → Ω1

R†).

Remark

We can define and compute H1
rig(X ) ⊂ H1

rig(U) as the kernel of a residue map.
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Reducing in cohomology

Proposition

For all ` ∈ N and every vector w ∈ Qp[x ]⊕dy , there exist vectors u, v ∈ Qp[x ]⊕dy

with deg(v) < deg(r), such that∑dy−1
i=0 wib

0
i

r `
dx

r
= d

(∑dy−1
i=0 vib

0
i

r `

)
+

∑dy−1
i=0 uib

0
i

r `−1
dx

r
.

Idea of proof.

To lowest order in r , the vector v has to satisfy the dy × dy linear system(
rG 0

r ′
− `I

)
v ≡ w

r ′
(mod r)

over Qp[x ]/(r) for some matrix G 0 ∈ Mdy×dy (Qp[x ]) such that the eigenvalues of
rG 0

r ′ are contained in Q ∩ [0, 1) ∩ Zp at every zero of r(x). Therefore, as long as
` ≥ 1 we can solve the system and reduce the pole order at the zeros of r(x).
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Computing the cohomology

In these reductions we have used that [b0
0, . . . , b0

dy−1] is an integral basis for Q(X )

over Q[x ], otherwise G 0 would not consist of polynomials.

By applying repeatedly, we can can represent the cohomology class of any 1-form
on U by one that is logarithmic at all P ∈ X \ U for which x(P) 6=∞.

We can do something similar at the points P with x(P) =∞ by working with the
integral basis [b∞0 , . . . , b∞dy−1] of Q(X ) over Q[1/x ].

Finding a basis for H1
rig(X ) is now reduced to finite dimensional linear algebra.

We find 1-forms ω1, . . . , ω2g on U that are a basis for H1
rig(X ).
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Computing matrix of Frobenius

By applying Φ and using the cohomological reductions, we find a matrix
M ∈ M2g×2g (Qp) and functions f1, . . . , f2g ∈ R† such that:

Φ∗(ωi ) = dfi +
∑
j

Mijωj

for i = 1, . . . , 2g .

M is the matrix of Frobenius on H1
rig(X ) w.r.t. the basis [ω1, . . . , ω2g ].
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Applications

To determine the zeta function Z (X ,T ) of X we forget about f1, . . . , f2g and
compute the reverse characteristic polynomial of the matrix M. Also works
over Fq with q = pn.

In joint work with W. Castryck, we construct X from X for (almost) all
curves of genus at most 5. Lifting X is easy in many other cases.

This is all completely implemented, can be found on my website and will
come with the next release of Magma.

To compute the Coleman integrals
∫ Q

P
ωj , we solve the linear system

∫ Q

P

ωi = fi (Q)− fi (P) +

2g∑
j=1

Mij

∫ Q

P

ωj for 1 ≤ i ≤ 2g

by inverting M − I . Together with J. Balakrishnan we are working on a paper
and Magma package that implement this idea for all points on all curves,
both single and double integrals (soon to be released).
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Example: X = X+
ns(13)

‘The cursed modular curve’.

Smooth plane quartic:

Q(x, y) = y4 + 5x4 − 6x2y2 + 6x3 + 26x2y + 10xy2 − 10y3 − 32x2 − 40xy + 24y2 + 32x − 16y

By computing a lot of Coleman integrals (both single and double) on X , we have
managed to work out non-Abelian Chabauty on this curve and have shown that it
has no rational points apart from the known ones.

Theorem (J. Balakrishnan, N. Dogra, S. Müller, J. Tuitman, J. Vonk)

We have |X+
ns(13)| = 7.

We are currently writing this up.

While this curve is very interesting, from the point of view of this talk it is just a
smooth plane quartic. What about Coleman integrals on more general curves?
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X = X0(44)

This curve has genus 4. The plane model given by

Q(x , y) = y5 + 12x2y3 − 14x2y2 + (13x4 + 6x2)y − (11x6 + 6x4 + x2)

has a singularity at (0, 0). We have:

r = x(x4 + 6x2 + 1)(45753125x8 + 8440476x6 + 1340814x4 + 69756x2 + 3125)

b0 =

[
1, y , y2,

y3

x
,
−10x4 − (6x4 − 13x2)y + (x4 + 12x2)y2 − x2y3 + 1

x5 + 6x3 + x

]
(Q,W 0,W∞) has good reduction at p = 7. Let:

P1 be the point (x , y) = (1, 1)

P2 be the point where x = 0 and b0 = [1, 0, 0, 0, 0].

Our algorithm finds that
∫ P2

P1
ω = 0 for all holomorphic differentials ω on X . This

suggests that P1 − P2 is torsion on the Jacobian of X . Indeed, it turns out that
15(P1 − P2) = O.
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