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Introduction

Zeta functions

Let X be an algebraic variety over a finite field Fq with q = pn.

Definition

Z (X ,T ) := exp

( ∞∑
i=1

|X (Fqi )|T
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i
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=
1

(1− T )(1− qT )
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Introduction

Weil conjectures

The main theoretical result on zeta functions is:

Theorem (Weil conjectures)

Suppose that X is smooth proper of dimension d then:

Z (X ,T ) =
∏2d

i=0 Pi (T )(−1)i+1

with Pi (T ) ∈ Z[T ],

Z (X , 1/(qnT )) = ±qnE/2TEZ (T ),

Pi (T ) =
∏

(1− αijT ) with αij algebraic numbers of absolute value qi/2.

where E is the Euler characteristic of X .

This was proved for curves and Abelian varieties by Weil (1948) and for general X
by Dwork, Grothendieck and Deligne (1974).

The proofs construct some cohomology theory such that Pi (T ) is the (reverse)
characteristic polynomial of the action of the q-th power Frobenius map on
H i (X ). For example H i (X ) can be `-adic etale cohomology or rigid cohomology.
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Introduction

Counting points

Since the zeta function can be given by a finite amount of data, one can hope to
compute it.

Problem

Compute Z (X ,T ) efficiently.

Bounds on the the degrees of the numerator and denominator of Z (X ,T ) are
known, so computing Z (X ,T ) reduces to computing a finite number of X (Fqi ).

For example, for a curve of genus g we have to compute up to X (Fqg ). Counting
naively we need at least qg operations (usually a bit more). This is too slow to
get anywhere for all but the smallest values of q and g .

Let us first give some applications.
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Introduction

Cryptography

For a curve C of genus g we have

Z (C ,T ) =
χ(T )

(1− T )(1− qT )
,

where χ(T ) =
∏2g

i=1(1− αi )T with αi algebraic integers of absolute value q1/2.

One can associate to C a finite Abelian group J(Fq) of called its Jacobian. The
order of this group is χ(1). The discrete logarithm problem (DLP) on J(Fq) is:

Problem

given P,Q ∈ J(Fq) find (the smallest) n ∈ N such that nP = Q.

This problem is used in cryptography in Diffie Helmann key exchange. When the
order of J(Fq) only has small prime factors the DLP is easy. So we need to
compute χ(1) and we can do this by computing Z (X ,T ).
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Introduction

Sato-Tate distributions

Let C be a (smooth) projective curve of genus g defined over Q.

For every prime p let Cp denote the curve over Fp obtained by reducing (the
equations of) C modulo p. Again, for all but a finite number of p:

Z (Cp,T ) =
Lp(T )

(1− T )(1− qT )

for some polynomial Lp(T ) ∈ Z[T ] of degree 2g .

Problem

How is the polynomial Lp(T/
√

p) distributed when p varies?

Conjectural answer: as the (reverse) characteristic polynomial of a random
conjugacy class of a certain compact group. So far only known for g = 1.

Andrew Sutherland (with coauthors) computed Lp(T ) for C with g = 2 and found
all predicted distributions!
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Curves

Elliptic curves

For elliptic curves there are many good point counting algorithms. These
algorithms usually use the group structure.

For example:

Schoof’s algorithm

Baby Step Giant Step

Canonical lift algorithms

For these algorithms there also exist good implementations in Magma and
elsewhere.

We will not go into more details here but move on to more general curves.
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Curves

Hyperelliptic curves

For hyperelliptic curves of genus g , i.e. curves defined by

y 2 = f (x)

with f (x) ∈ Fq[x ] of degree 2g + 1 or 2g + 2, the methods for elliptic curves can
be generalised but quickly become unpractical (they are all exponential in g).

Theorem (Kedlaya, 2001)

The zeta function of a hyperelliptic curve of genus g over a finite field Fq with
q = pn and p odd can be computed in time:

O((pg 4n3)1+ε)

Actually Kedlaya only considered f of degree 2g + 1. Harrison extended it to all
hyperelliptic curves in odd characteristic and implemented it in Magma.
Vercauteren did the same in even characteristic.

So Magma has good and general implementations of Kedlaya’s algorithm.
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Curves

General curves

What about more general curves?

Some generalisations of Kedlaya’s algorithm have been published:

superelliptic curves, Gaudry-Gürel (2003),

Cab curves, Denef and Vercauteren (2004),

nondegenerate curves, Castryck, Denef and Vercauteren (2006),

The class of nondegenerate curves includes all other cases and is the most general
kind of curve for which a Kedlaya type algorithm had been worked out before
2014.

However there are two problems:

Not all curves are nondegenerate. Nondegenerate curves have dim 2g + 1 in
the moduli space of curves of genus g which has dim 3g − 3.

The Castryck, Denef and Vercauteren algorithm is not very practical and was
therefore never (really) implemented.

Since 2014 I have developed and implemented another generalisation of Kedlaya’s
algorithm which does not suffer from these problems.
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Curves

My algorithm

Let C/Fq with q = pn be the smooth projective curve birational to a (singular)
plane curve

f (x , y) = 0

with f ∈ Fq[x , y ] irreducible and monic in y of degree dx , dy in x , y .

Theorem (T, 2014)

Suppose that we know a ‘good’ lift F ∈ Zq[x , y ] of f to characteristic zero
(technical). Then the zeta function of C can be computed in time:

O((pd6
y d4

x n3)1+ε)

What constitutes a ‘good’ lift to characteristic zero is rather technical. However,
together with Wouter Castryck, we have developed and implemented an algorithm
that (usually) finds such a lift for all curves of genus ≤ 5. Moreover, often a lift is
known anyway or easy to construct. I have implemented the algorithm completely,
it will soon be included in Magma.
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Curves

How does it work?

There is a way of associating to a curve C/Fq a cohomology space H1
rig(C ) which

is a vector space over a p-adic field, by lifting to characteristic zero and taking
(overconvergent) De Rham cohomology.

The Frobenius map F on C (raising coordinates to the q-th power) acts on
H1

rig(C ) in such a way that

Z (C ,T ) =
det(1− FT |H1

rig(C ))

(1− T )(1− qT )
.

We compute the matrix of F on H1
rig(C ) to some p-adic precision that is sufficient

to recover Z (C ,T ) from the Weil conjectures.

This involves Hensel lifting F to some overconvergent completion of the lift of C ,
computing a basis for H1

rig(C ) by linear algebra, applying the lift of F to this basis
and reducing the resulting 1-forms back to this basis by repeatedly substracting
exact forms.
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Curves

Implementation

I have been working on my implementation on and off for about 2 years now. Until now the code was only
available on my webpage and not even really as a package. Over the past two months (my visit here) it has
gotten about 3 times as fast and been integrated in Magma (thanks to Allan and especially Steve!).

The main functions are the following:

intrinsic ZetaFunction(f::RngUPolElt, p::RngIntElt : N:=0, exactcoho:=false,
W0:=0, Winf:=0) -> FldFunRatUElt

Computes the zeta function of the smooth projective curve birational to the plane model defined by f . Here f
is a polynomial in K [x, y ] where K is a number field such that OK/(p) ∼= Fq .

intrinsic GonalityPreservingLift(C::Crv[FldFin]) -> RngUPolElt, AlgMatElt, AlgMatElt

Computes a ‘good’ lift f to characteristic zero of a curve of genus 3, 4, 5 such that the degree in y is a small
as possible.

intrinsic ZetaFunction(C::Crv[FldFin] : Al := "Default") -> FldFunRatUElt

Combines the two previous functions to compute the zeta function of (almost) any curve of genus at most 5,
switching to implementations of Harrison, Vercauteren or naive counting when appropriate. Somewhat
unexpectedly my implementation usually runs faster than Harrison’s in the case of hyperelliptic curves, even
though both algorithms are the same in that case and my implementation has to do some extra work. Mainly
due to better bounds on the p-adic precision and a precomputation before doing the cohomological reductions.
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Curves

Some examples

Example: the modular curve X1(17)

> P<x>:=PolynomialRing(RationalField());

> R<y>:=PolynomialRing(P);

> f:=y^4 + (x^3 + x^2 - x + 2)*y^3 + (x^3 - 3*x + 1)*y^2 - (x^4 + 2*x)*y + x^3 + x^2;

> p:=101;

> ZetaFunction(f,p);

(10510100501*T^10 + 6035503258*T^9 + 1900905345*T^8 + 396288448*T^7 + 60231754*T^6 + 6865620*T^5 + 596354*T^4 +

38848*T^3 + 1845*T^2 + 58*T + 1)/(101*T^2 - 102*T + 1)

Example: a generic genus 5 curve

> C:=RandomGenus5CurveNonTrigonal(FiniteField(37));

> C;

Curve over GF(37) defined by

19*$.1^2 + 18*$.1*$.2 + 31*$.2^2 + $.1*$.3 + 19*$.2*$.3 + 25*$.3^2 + 8*$.1*$.4 + 17*$.2*$.4 + 29*$.3*$.4 + 19*$.4^2 +

18*$.1*$.5 + 27*$.2*$.5 + 26*$.3*$.5 + 14*$.4*$.5 + 32*$.5^2,

12*$.1^2 + 31*$.1*$.2 + 18*$.2^2 + 11*$.1*$.3 + 24*$.2*$.3 + 21*$.3^2 + 12*$.1*$.4 + 4*$.2*$.4 + 21*$.3*$.4 + 22*$.4^2 +

4*$.1*$.5 + 31*$.2*$.5 + 23*$.3*$.5 + 20*$.4*$.5 + 35*$.5^2,

21*$.1^2 + 35*$.1*$.2 + 17*$.2^2 + 8*$.1*$.3 + 12*$.2*$.3 + 32*$.3^2 + 34*$.1*$.4 + 22*$.2*$.4 + 24*$.3*$.4 + 18*$.4^2 +

19*$.1*$.5 + 10*$.2*$.5 + 19*$.3*$.5 + 10*$.4*$.5

> ZetaFunction(C);

(69343957*T^10 - 5622483*T^9 + 1418284*T^8 + 217671*T^7 - 2997*T^6 + 6604*T^5 - 81*T^4 + 159*T^3 + 28*T^2 - 3*T + 1)

/(37*T^2 - 38*T + 1)
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Curves

Some examples
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Curves

Harvey’s p1/2+ε algorithm

Both Kedlaya’s original algorithm and our new algorithm are polynomial time in
dx , dy and n, but exponential in log(p) hence not polynomial time. Also in
practice the characteristic p has to be rather small.

Finding an algorithm for computing zeta functions of curves (even hyperelliptic
ones) which is simultaneously polynomial time in dx , dy and the field size is a big
open problem which we do not expect to be solved any time soon.

For hyperelliptic curves David Harvey has improved the dependence of runtime on
the characteristic to p1/2+ε. Let ω be an exponent for matrix multiplication.

Theorem (Harvey, 2007)

Kedlaya’s algorithm can be modified to run in time:

O((p1/2gω+5/2n7/2 + log(p)g 8n5)1+ε).

Note that the exponents of g and n are slightly worse than in Kedlaya’s algorithm.
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Curves

Implementation

Harvey’s p1/2+ε algorithm for hyperelliptic curves is not included in Magma (as far
as I know), but the C code (for the primefield case q = p) is on his webpage and
does come with SAGE. This is the only case I know of where SAGE beats Magma
for point counting.

Moritz Minzlaff generalised Harvey’s algorithm to superelliptic curves (yk instead
of y 2) and implemented it completely in Magma. However, as far as I know this
code does not come with Magma.

The Magma package was released under a GPL license according to his paper, but
I could not find it online anymore. The main functions seem to be named
PFrobeniusAction(a,h,N) and ZetaFunction(a,h).
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Curves

Harvey’s average polynomial time algorithm

Now take a hyperelliptic curve C : y 2 = f (x) with f ∈ Z[x ] and for a prime of
good reduction p let Cp denote its reduction mod p. Let B be a bound on the
absolute values of the coefficients of f .

Theorem

Kedlaya’s algorithm can be modified to return all Z (Cp,T ) for p < N in time

O(g 8+εN log2(N) log1+ε(BN))

Since there are roughly N/ log(N) primes (of good reduction) up to N, this is
polynomial time per prime. Therefore, the algorithm runs in average polynomial
time.

This algorithm has not been implemented directly, but a lower tech version of it
(Hasse-Wit matrix) combined with Baby Step Giant Step has been used by Harvey
and Sutherland to collect Sato-Tate distributions for curves of genus 2 and 3.
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Curves

My future plans

First, I want to extend the algorithm to find a ‘good’ lift to all curves admitting a
degree 3 or 4 map to P1 instead of just curves of genus ≤ 5.

Second, I want to adapt the point counting code so that it can compute Coleman
integrals, which are used in the effective Chabauty method for finding points on
curves over number fields. This is joint work in progress with Jennifer
Balakrishnan, the code is almost finished.

Third, using Harvey’s methods, I want to develop and implement adaptations of
my algorithm for general curves that will also run in time p1/2+ε and average
polynomial time, while only getting slightly worse in terms of the geometry dx , dy .
This should enormously expand the range of curves for which we can compute
Sato-Tate distributions and more generally L-functions.

A lot of (really technical) work remains to be done.
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Higher dimension

Smooth projective hypersurfaces

Let X be a projective hypersurface in Pn+1
Fq

defined by P ∈ Fq[x0, . . . , xn+1]

homogeneous of degree d and U = Pn+1
Fq
\ X its complement.

Of particular interest are quartic hypersurfaces in P3
Fq

since these are K3 surfaces.

For higher dimension hypersurfaces the situation is quite different from the curve
case. All known practical algorithms are p-adic in nature, the most important ones
are:

Direct method,

Deformation method,

Harvey’s algorithm for arbitrary dimension.

We will give a brief overview and talk about what is in Magma and what could be.
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Higher dimension

Direct method

Abbott, Kedlaya and Roe (2006): Kedlaya’s algorithm for smooth hypersurface
X ⊂ Pn+1

Fq
of degree d with q = pa. There is some Magma code on Kedlaya’s

webpage, but very slow.

Main idea: compute the cohomology Hn+1
rig (U) of U = Pn+1 \ X with its action of

Frobenius.

Running time should be about O((pndn2

an)1+ε).

This has been and is being improved by Costa, Harvey and Kedlaya (201?). Costa
has some implementation in C++, not publicly available yet.

Running time should be about O((pdn2

an)1+ε) and there are also
√

p and average
polynomial time versions.

Can the dependence on the dimension be improved?
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Higher dimension

Deformation method

Lauder (2004) proposes to put the hypersurface X ⊂ Pn+1
Fq

with q = pa into a

(smooth) family Y /T over some open T ⊂ P1 with:

Y0 a diagonal hypersurface,

Y1 = X .

The relative cohomology Hn
rig (Y /T ) is an overconvergent F -isocrystal:

a p-adic differential equation (the Gauss-Manin connection),

a Frobenius structure with matrix Φ(t).

The Frobenius structure is horizontal w.r.t the connection, so Φ(t) satisfies a
p-adic differential equation.

Main idea: compute Φ(0) (easy, Y0 is diagonal) then solve the differential
equation for Φ(t), finally find Φ(1) and deduce Z (X ,T ).
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Higher dimension

Complexity

Pancratz and me (2013) improved this in terms of complexity (a bit) and in
practice (a lot). Let ω be an exponent for matrix multiplication and e the basis of
the natural logarithm.

Theorem

The (simplified) time complexity of the deformation method is:

O
(

(pdn(ω+4)en(ω+1)a3)1+ε
)
.

Note that this is polynomial in dn instead of dn2

and has a3 instead of an.

Pancratz has implemented this in C using FLINT (for families defined over Q).
The code can be found on his GitHub and my webpage.
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Higher dimension

Harvey’s algorithm

Harvey (2014) gave p1/2+ε and average polynomial time algorithms for any
scheme X of finite type over Z (no smoothness assumptions).

Theorem

Let X/Z be a scheme of finite type and Xp the reduction of X modulo p.

Z (Xp,T ) can be computed in time O(p log1+ε(p)).

Z (Xp,T ) can be computed in time O(p1/2 log2+ε).

Z (Xp,T ) can be computed for all p < N in time O(N log3+ε(N)).

To be able to work in this generality, Harvey avoids the use of cohomology. This
might also have some disadvantages, the matrices get very large! Moreover, the
running time is only polynomial in dn2

again.

Not clear how practical, Costa is implementing it for curves now. Elsenhans did an
implementation of a very special type of K3 surface (degree 2) in Magma recently:
WeilPolynomialOfDegree2K3Surface.

Jan Tuitman KU Leuven Point counting: past, present and future. January 25, 2017 22 / 23



Higher dimension

Harvey’s algorithm

Harvey (2014) gave p1/2+ε and average polynomial time algorithms for any
scheme X of finite type over Z (no smoothness assumptions).

Theorem

Let X/Z be a scheme of finite type and Xp the reduction of X modulo p.

Z (Xp,T ) can be computed in time O(p log1+ε(p)).

Z (Xp,T ) can be computed in time O(p1/2 log2+ε).

Z (Xp,T ) can be computed for all p < N in time O(N log3+ε(N)).

To be able to work in this generality, Harvey avoids the use of cohomology. This
might also have some disadvantages, the matrices get very large! Moreover, the
running time is only polynomial in dn2

again.

Not clear how practical, Costa is implementing it for curves now. Elsenhans did an
implementation of a very special type of K3 surface (degree 2) in Magma recently:
WeilPolynomialOfDegree2K3Surface.

Jan Tuitman KU Leuven Point counting: past, present and future. January 25, 2017 22 / 23



Higher dimension

Harvey’s algorithm

Harvey (2014) gave p1/2+ε and average polynomial time algorithms for any
scheme X of finite type over Z (no smoothness assumptions).

Theorem

Let X/Z be a scheme of finite type and Xp the reduction of X modulo p.

Z (Xp,T ) can be computed in time O(p log1+ε(p)).

Z (Xp,T ) can be computed in time O(p1/2 log2+ε).

Z (Xp,T ) can be computed for all p < N in time O(N log3+ε(N)).

To be able to work in this generality, Harvey avoids the use of cohomology. This
might also have some disadvantages, the matrices get very large! Moreover, the
running time is only polynomial in dn2

again.

Not clear how practical, Costa is implementing it for curves now. Elsenhans did an
implementation of a very special type of K3 surface (degree 2) in Magma recently:
WeilPolynomialOfDegree2K3Surface.

Jan Tuitman KU Leuven Point counting: past, present and future. January 25, 2017 22 / 23



Higher dimension

My future plans

The deformation method is better in terms of dn and a, but not p1/2+ε or average
polynomial time yet.

However, again it should be possible to use Harvey’s methods to adapt the
deformation method so that it runs in p1/2+ε and average polynomial time as well,
while remaining polynomial in dn and a (with slightly worse exponents).

This seems to be possible and I am currently writing it up.

I want to do a Magma implementation of the deformation method (both the
original and the improved version).

A lot of (really technical) work remains to be done.
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