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Introduction

Zeta functions

Let X/Fq be an algebraic variety over finite field.

Definition (zeta function)

Z (X ,T ) = exp

( ∞∑
i=1

|X (Fqi )|
T i

i

)
.

|X (Fqi )| denotes number of points on X with values in Fqi .

Theorem (Weil conjectures)

Suppose that X is smooth and projective of dimension m. Then:

Z (X ,T ) =
P1P3...P(2m−1)

P0P2......P2m
, where Pi =

∏
j(1− αijT ) ∈ Z[T ].

The transformation t → qm/t maps the αi ,j to the α2m−i ,j .

|αi ,j | = qi/2 for all j , where |·| denotes the complex absolute value.
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Introduction

Computing zeta functions

Problem

Compute Z (X ,T ) efficiently.

Naive algorithm: compute enough of the X (Fqi ) by trying all values. Far
too slow to be useful in practice!

For curves:

Schoof’s `-adic method: in theory for all curves (Pila), in practice
only for elliptic curves (genus 2 with some extra structure).

Generic group methods (e.g. Baby Step Giant Step). Better than
naive counting, but still restricted to small fields and low genus.

We will not say anything more about these and focus on p-adic algorithms
in the rest of this talk.
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Introduction

Applications

1) Discrete Logarithm Problem in cryptography:

Let X/Fq an algebraic curve, J its Jacobian variety, so J(Fq) is a finite
abelian group.

DLP: given P,Q ∈ J(Fq) find n ∈ Z such that n ∗ P = Q. Weak if |J(Fq)|
only has small prime factors. However, |J(Fq)| can be deduced easily from
Z (X ,T ), by evaluating its numerator at 1.

2) Compute invariants of varieties and data about conjectures, e.g.:

Picard numbers of K3 surfaces,

(conjectures about) L-functions,

Sato-Tate and other distributions,

Langlands program, modularity.
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Introduction

p-adic cohomology

Let:

X be an algebraic variety of dimension m over Fq with q = pa,

Qq the unique unramified extension of degree a of Qp,

Zq its valuation ring,

σ ∈ Gal(Qq/Qp) the unique lift of x 7→ xp in Gal(Fq/Fp).

Fact (Lefschetz formula)

Can define p-adic cohomology groups H i
rig (X ) and H i

rig ,c(X ): finite
dimensional Qq vector spaces with σ-semilinear action of p-th power
Frobenius map Fp on X (sending coordinates to p-th powers) such that

Z (X ,T ) =
2m∏
i=0

det(1− T Fa
p|H i

rig ,c(X ))(−1)
i+1
.
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Curves
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Curves

Kedlaya’s algorithm

Let:

Fq a finite field of odd characteristic with q = pa,

Q ∈ Fq[x ] monic of degree 2g + 1 without repeated roots,

X smooth projective curve of genus g defined by y2 = Q(x).

Theorem (Kedlaya, 2001)

Can determine Z (X ,T ) by computing H1
rig (X ) with action of Fp in time

O((pg4a3)1+ε).

Completely implemented in Magma by Harrison (also even degree models
and characteristic 2). Something available in SAGE and PARI as well...

Note: input size is about log(p)ga, so complexity in p is quite bad. All
p-adic algorithms suffer from this, but dependence on p can be improved.
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Curves

Harvey’s improvements (I)

The complexity of Kedlaya’s algorithm in p can be improved using Baby
Step Giant Step to carry out cohomological reductions more efficiently.

Let ω be an exponent for matrix multiplication.

Theorem (Harvey, 2006)

Z (X ,T ) can be computed in time

O

((
p1/2gω+5/2a7/2 + log(p)g8a5

)1+ε)
.

This is a lot better in p and still polynomial in g , n. Implemented:

in Sage by Harvey,

in Magma by Minzlaff (even for superelliptic curves).
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Curves

Harvey’s improvements (II)

For a hyperelliptic curve over Z, i.e. such that Q ∈ Z[x ], can exploit
overlap between computations for Q mod p for various p (of good
reduction), to obtain algorithm with polynomial runtime per prime.

Let ||Q|| denote bound on absolute value coefficients of Q and
Xp = X ⊗ Fp the reduction mod p.

Theorem (Harvey, 2014)

Z (Xp,T ) can be determined for all p ≤ N in time per prime

O
(
g8+ε log3(N) log1+ε(||Q||N)

)
.

Not implemented. In this form not expected (by Harvey) to be practical.
However, Harvey-Sutherland have developed practical version for g ≤ 3.
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Curves

General curves

What about more general curves? I have developed a version of Kedlaya’s
algorithm for general curves.

Suppose that a plane model of a ‘good’ lift to characteristic zero of the
curve X/Fq with q = pa is defined by a polynomial Q ∈ Zq[x , y ] which is

irreducible mod p,

monic in y ,

of degree dx in x and degree dy in y .

Theorem (Tuitman, 2014-2016)

Z (X ,T ) can be computed in time O((pd6
y d4

x a3)1+ε).

Together with Castryck we have constructed ‘good’ gonality preserving
lifts for all curves of genus g ≤ 5. Completely implemented in Magma!
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Curves

Example: generic curve of genus 5

With the latest version of Magma (v2.23):

> C:=RandomGenus5CurveNonTrigonal(FiniteField(101));

> C;

Curve over GF(101) defined by

36*$.1^2 + 21*$.1*$.2 + 30*$.2^2 + 7*$.1*$.3 + 28*$.2*$.3 + 26*$.1*$.4 +

79*$.2*$.4 + 49*$.3*$.4 + 36*$.4^2 + 57*$.1*$.5 + 2*$.2*$.5 + 69*$.3*$.5 +

66*$.4*$.5 + 35*$.5^2,

97*$.1^2 + 94*$.1*$.2 + 64*$.2^2 + 36*$.1*$.3 + 15*$.2*$.3 + 66*$.3^2 +

39*$.1*$.4 + 22*$.2*$.4 + 34*$.3*$.4 + 85*$.4^2 + 98*$.1*$.5 + 67*$.2*$.5 +

49*$.3*$.5 + 33*$.4*$.5 + 25*$.5^2,

57*$.1^2 + 6*$.1*$.2 + 11*$.2^2 + 9*$.1*$.3 + 87*$.2*$.3 + 73*$.3^2 + 64*$.1*$.4

+ 69*$.2*$.4 + 69*$.3*$.4 + 11*$.4^2 + 11*$.1*$.5 + 17*$.2*$.5 + 81*$.3*$.5

+ 79*$.4*$.5 + 50*$.5^2

> time Z:=ZetaFunction(C);

Time: 13.130

> Z;

(10510100501*t^10 - 624362406*t^9 + 51515050*t^8 - 4539445*t^7 + 1279872*t^6 -

98962*t^5 + 12672*t^4 - 445*t^3 + 50*t^2 - 6*t + 1)/(101*t^2 - 102*t + 1)
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Hypersurfaces

Hypersurfaces
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Hypersurfaces

AKR algorithm

Let X ⊂ Pn
Fq

be a smooth projective hypersurface of degree d with q = pa.

Abbott, Kedlaya and Roe (2006) proposed a Kedlaya type algorithm to
determine Z (X ,T ). by computing the cohomology Hn

rig (U) of the
complement U = Pn − X with its action of Fp.

The running time was not analysed but should be (pdna)O(n).

Since the input size is about log(p)dna, this is not polynomial time even
when p is fixed.

Costa, Kedlaya and Harvey are working on an improvement of this
algorithm with better complexity in p. Costa is working on an
implementation in C.
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Hypersurfaces

Harvey’s arithmetic scheme algorithm

Harvey (2015) proposed algorithms that avoid the use of cohomology and
do not need any smoothness assumption on X . These algorithms are quite
similar (but superior) to an earlier algorithm of Lauder and Wan (2006).

The complexity in p is very good: O(p1+ε), O(p1/2+ε) or average
polynomial time, depending on the exact version of the algorithm.

However the complexity is again polynomial in dn2 and an instead of dn

and a, like for AKR.

The algorithm is not expected to practical (by Harvey). However, a very
special case (K3 surfaces which are double covers of P2) has been partially
implemented in Magma by Elsenhans.
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Hypersurfaces

Deformation method (I)

Lauder (2004) proposes to put the smooth hypersurface X ⊂ Pn
Fq

with

q = pa into a (smooth) family Xt/T over some open T ⊂ P1 with:

X0 a diagonal hypersurface,

X1 = X .

The relative cohomology Hn
rig (Xt/T ) is an overconvergent F -isocrystal:

a p-adic differential equation (the Gauss-Manin connection),

a Frobenius structure with matrix Φ(t).

The Frobenius structure is horizontal w.r.t the connection, so Φ(t)
satisfies a p-adic differential equation.

Main idea: compute Φ(0) (easy, X0 is diagonal) then solve the differential
equation for Φ(t), finally find Φ(1) and deduce Z (X ,T ).
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Hypersurfaces

Deformation method (II)

Pancratz and me (2013) improved this in terms of complexity (a bit) and
in practice (a lot).

Let ω be an exponent for matrix multiplication and e the basis of the
natural logarithm.

Theorem (Pancratz-Tuitman, 2012)

Z (X ,T ) can be computed in time O
(
(pdn(ω+4)en(ω+1)a3)1+ε

)
.

Note that this is polynomial time for fixed p unlike any of the other
algorithms for hypersurfaces mentioned so far!

Implemented in C by Pancratz, going into Sage soon? (Costa and Flori).

My latest work (2017) improves the complexity of the deformation method
in p from O(p1+ε) to O(p1/2+ε), resulting in the algorithm of best known
complexity for smooth projective hypersurfaces.
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New algorithm

New algorithm
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New algorithm

Setup

Let X1 ⊂ Pn
Fq

with q = pa be a smooth projective hypersurface of deg d .

P1 ∈ Zq[x0, . . . , xn] homogeneous of degree d defining a lift of X1.
Suppose d is not divisible by p.

P0 = a0xd
0 + . . .+ anxd

n with ai ∈ Z×q defining diagonal hypersurface.

P = (1− t)P0 + tP1 ∈ Zq[t][x0, . . . , xn] defining deformation Xt/T .

Let Ut/T be the affine complement of Xt/T .

Fact

Z (X1,T ) =
det(1− T (p−1Fp)a|Hn

rig (U1))(−1)
n

(1− T )(1− qT ) . . . (1− qn−1T )
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New algorithm

Relative cohomology

We fix an explicit basis [ω1, . . . , ωb] for Hn
rig (Ut). M ∈ Mb×b(Qq(t))

denotes the matrix of the Gauss–Manin connection ∇ and Φ(t) the matrix
of p−1Fp on Hn

rig (U1):

∇(ωj) =
b∑

i=1

Mijωi ⊗ dt, p−1Fp(ωj) =
b∑

i=1

Φijωi .

Let C ∈ Mb×b(Qq[[t]]) denote solution to differential equation:(
d

dt
+ M

)
C = 0, C (0) = I .

Then it follows from the the theory that

Φ(t) = C Φ(0)(Cσ(tp))−1

We can deduce Φ(1) from Φ(0) by solving for C .
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New algorithm

Bostan-Gaudry-Schost

Let:

R be a commutative ring,

M(d) number of operations for multiplying polynomials of degree at
most d over R,

MM(m) number of operations for multiplying m×m matrices over R,

A(x) be m ×m matrix over R[x ] of degree at most 1.

Theorem (Bostan-Gaudry-Schost)

Suppose that some invertibility conditions are satisfied. Then for any
positive integer N, the matrix product A(1)A(2) · · ·A(N) can be
computed in

O
(

MM(m)
√

N + m2M(
√

N)
)

ring operations in R.
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New algorithm

Example: computing k!

To get some idea, how do we compute k! in O(k1/2+ε) operations?

Suppose without loss of generality that k = c2.

Define a polynomial

f (x) = (x + 1) . . . (x + c).

Then
k! = f (0)f (c) . . . f ((c − 1)c).

However, a polynomial of degree c can be evaluated in c points in
O(M(c) log(c)) operations by multipoint evaluation.

In this form the idea is due to the Chudnovsky brothers. BGS improve this
by getting rid of the factor log(c) using that 0, c , . . . , (c − 1)c are in
arithmetic progression.
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New algorithm

Diagonal fibre

There is an explicit formula involving factorials for Φ(0) (see paper with
Pancratz).

The formula is very complicated, but essentially we need to compute

k(k + 1) . . . (k + p − 1) mod pN

for a number of k and a p-adic precision N both independent of p.

Doing this naively takes time at least O(p1+ε).

Using BGS, we can get this down to O(p1/2+ε)!
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New algorithm

Differential equation (I)

Recall that we are looking for C =
∑

Ci t
i ∈ Mb×b(Qq[[t]]) such that(

d

dt
+ M

)
C = 0, C (0) = I .

Write M = G/r with G ∈ Mb×b(Qq[t]) and r ∈ Zq[t]. Moreover, denote

G =
∑

Gi t
i r =

∑
ri t

i .

Then we get the following recurrence for the matrices Ci :

C0 = I ,

Ci+1 =
−1

r0(i + 1)

 i∑
j=i−deg(G)

Gi−jCj +
i∑

j=i−deg(r)+1

ri−j+1(jCj)

 .
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New algorithm

Differential equation (II)

Recall that Φ(t) = C (t)Φ(0)(Cσ(tp))−1 and we want to compute Φ(1).

The required t-adic precision is linear in p. So solving the recursion for the
Ci naively takes time at least O(p1+ε).

We need to evaluate at t = 1 along the way, not at the end (too many
terms). Solve the recurrence for Di = C0 + . . .+ Ci instead. Need only Di

with i ≡ i0 mod p for some i0.

The recurrence for Di is not first order, and there is a denominator i + 1.
Solve larger recurrence for [Di ,Di+1, . . . ,Dκ] where κ is the order and
multiply by (i + 1)!.

Some other minor issues (related to convergence) can also be resolved and
once again using BGS, we can compute Φ(1) from Φ(0) in time O(p1/2+ε).
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New algorithm

Complexity

Let X be a generic hypersurface of degree d in projective space Pn
Fq

over a
finite field Fq of characteristic p not dividing d and cardinality q = pa.

Theorem (Tuitman, 2017)

Z (X ,T ) can be computed in time

O

((
p1/2a3dn(2ω+3)en(ω+1)

)1+ε)
.

So the complexity in p has been lowered from O(p1+ε) to O(p1/2+ε) at
the (small) expense of increasing the complexity in dn from O(dn(ω+4)) to
O(dn(2ω+3)).

This new algorithm has the best known complexity for computing the zeta
function of a smooth projective hypersurface.
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New algorithm

Loose ends

What about more general X ? Can likely be extended to (some)
nondegenerate hypersurfaces in toric varieties. The only problem is
finding ‘easy’ starting fibres X0 for a given Newton polytope.

What about average polynomial time? Replacing BGS by
accumulating remainder trees (Costa-Gerbicz-Harvey) this should be
possible. However, I have not tried this yet.

What about an implementation? Magma code to compute Φ(0) in
time O(p1/2+ε) is already available on my website (using an
implementation of BGS by Minzlaff). I have some proof of concept
code for the whole algorithm which is available upon request :-) (very
messy and not optimised at all).

To be continued....
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