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Introduction

Coleman integration

Suppose given

X/Zp an algebraic curve of good reduction,

P,Q ∈ X (Qp),

ω ∈ Ω1(X ).

Coleman defined a path independent line integral∫ Q

P

ω.

Actually, we can

replace Zp by the valuation ring O of Cp,

take ω ∈ Ω1(U) for some (wide) open U ⊂ X (an),

extend to integrate over D ∈ J(Qp) where J is the Jacobian of X (above:
D = Q − P).
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Introduction

Chabauty method

This is particulary interesting since Coleman used it to reformulate the Chabauty
method:

Theorem

Let X be a curve of genus g ≥ 2 over Q, J the Jacobian of X , p a prime of good
reduction and X = X ⊗Qp. Moreover, let r be the MW rank of X and suppose

that r < g. Then there exists ω ∈ Ω1(X ) such that
∫ Q

P
ω = 0 for all

P,Q ∈ X (Q).

So by computing Coleman integrals, one might sometimes be able to find rational
points, or prove that we have found all of them.

Remark

The nonabelian Chabauty method by Kim tries to get rid of the assumption
r < g. This still involves (iterated) Coleman integrals!
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Introduction

Hyperelliptic curves

Let X be a hyperelliptic curve of genus g given by

y2 = f (x)

with f (x) ∈ Zp[x ] monic of degree 2g + 1 separable mod p.

Balakrishnan, Bradshaw and Kedlaya gave an algorithm (implemented in SAGE)
to compute Coleman integrals in this case.

The method is based on Kedlaya’s algorithm for computing zeta functions of
hyperelliptic curves over finite fields.

Has been succesfully used for doing new cases of effective Chabauty.

Jan Tuitman KU Leuven Coleman integration for general curves June 10, 2016 4 / 26



Introduction

Hyperelliptic curves

Let X be a hyperelliptic curve of genus g given by

y2 = f (x)

with f (x) ∈ Zp[x ] monic of degree 2g + 1 separable mod p.

Balakrishnan, Bradshaw and Kedlaya gave an algorithm (implemented in SAGE)
to compute Coleman integrals in this case.

The method is based on Kedlaya’s algorithm for computing zeta functions of
hyperelliptic curves over finite fields.

Has been succesfully used for doing new cases of effective Chabauty.

Jan Tuitman KU Leuven Coleman integration for general curves June 10, 2016 4 / 26



Introduction

General curves

What about more general curves?

Until recently: Main obstruction to compute Coleman integrals for general curves
was lack of a Kedlaya type algorithm to compute p-adic cohomology of the curve.

However, recently I have developed and implemented a practical extension of
Kedlaya’s algorithm to (almost) all curves.

Magma packages pcc p and pcc q can be found at

https://perswww.kuleuven.be/jan_tuitman/

It is therefore natural to ask if this algorithm can also be used to compute
Coleman integrals on (more) general curves.

The answer is yes!
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p-adic cohomology

Setup

Let X be a nonsingular projective curve of genus g over Q given by a (possibly
singular) plane model Q(x , y) = 0 with Q(x , y) ∈ Z[x , y ] irreducible and monic in
the variable y .

dx , dy the degrees of Q in x , y .

∆(x) ∈ Z[x ] the discriminant of Q(x , y) w.r.t. y .

r(x) ∈ Z[x ] squarefree with the same roots as ∆(x).

Note that if r(x0) = 0 then one of the following two holds:

the plane model Q(x , y) has a singularity lying over x0,

the map x : X → P1 has a ramification point lying over x0.
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p-adic cohomology

Integral basis

Let Q(X ) denote the function field of the curve X .

Definition

We let W 0 ∈ Gldy (Q[x , 1/r ]) denote a matrix such that, if

b0
j =

dy−1∑
i=0

W 0
i+1,j+1y i

then [b0
0 , . . . , b

0
dy−1] is an integral basis for Q(X ) over Q[x ].

Similary, we let W∞ ∈ Gldy (Q[x , 1/x , 1/r ]) denote a matrix such that
[b∞0 , . . . , b∞dy−1] is an integral basis for Q(X ) over Q[1/x ].

Example

When the plane model Q(x , y) = 0 is smooth, we can take W 0 = I since
[y0, . . . , ydy−1] is already an integral basis in that case.
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p-adic cohomology

Good reduction at p

We need to impose some conditions on the prime p:

Definition

We say that the triple (Q,W 0,W∞) has good reduction at a prime number p, if
the following conditions hold:

1 the curve X has good reduction at p,

2 the divisors defined by r(x) on X and on P1 have good reduction at p, i.e.
the points in their support all have different reductions modulo p.

3 W 0 ∈ Gldy (Zp[x , 1/r ]),

4 W∞ ∈ Gldy (Zp[x , 1/x , 1/r ]),

Remark

(Q,W 0,W∞) has good reduction at all but a finite number of primes p and for
Chabauty one can vary p. However, for computing zeta functions p is fixed and it
can in general be hard to find a lift that has good reduction in the above sense.
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p-adic cohomology

Overconvergent rings

From now on we assume that (Q,W 0,W∞) has good reduction at p and denote
X = X ⊗Qp.

Let:

V the Zariski open of P1
Qp

defined by the two conditions x 6=∞ and

r(x) 6= 0,

U = x−1(V ) the Zariski open of X lying over V ,

U,V the reductions mod p of U,V .

We write

S† = Qp〈x , 1/r〉†, R† = Qp〈x , 1/r , y〉†/(Q).

where 〈〉† denotes weak completion, i.e.

Qp〈x1, . . . , xm〉† = {
∑
I

cI x
i1
1 . . . x

im
m : radius of convergence > 1}.
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p-adic cohomology

Lifting Frobenius

The p-the power Frobenius map Fp in characteristic p can be lifted to the rings
S† = Qp〈x , 1/r〉† and R† = Qp〈x , 1/r , y〉†/(Q) in the following way:

Set Fp(x) = xp.

Compute Fp(1/r) ∈ S† Hensel lifting Fp(1/r) = 1/r(xp), starting from 1/rp.

Compute Fp(y) ∈ R† Hensel lifting Q(xp,Fp(y)) = 0, starting from yp.

Remark

In practice it is important that Fp(x) = xp. However, for a Frobenius lift of this
form to exist, we need to remove the zeros of r(x) from the curve.
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p-adic cohomology

p-adic cohomology

Definition

The p-adic cohomology of U is the cohomology of the overconvergent de Rham

complex Ω•R† . More precisely, we have Ω1
R† = R†dx⊕R†dy

dQ and

H0
rig(U) = ker(d : R† → Ω1

R†),

H1
rig(U) = coker(d : R† → Ω1

R†).

Theorem

By the assumption on good reduction, there is a comparison theorem with
algebraic De Rham cohomology:

H i
rig(U) ∼= H i

dR(U) for i = 0, 1

Remark

We can define H1
rig(X ) ⊂ H1

rig(U) as the kernel of a residue map.
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p-adic cohomology

Reducing in cohomology

Proposition

For all ` ∈ N and every vector w ∈ Qp[x ]⊕dy , there exist vectors u, v ∈ Qp[x ]⊕dy

with deg(v) < deg(r), such that∑dy−1
i=0 wib

0
i

r `
dx

r
= d

(∑dy−1
i=0 vib

0
i

r `

)
+

∑dy−1
i=0 uib

0
i

r `−1
dx

r
.

Idea of proof.

To lowest order in r , the vector v has to satisfy the dy × dy linear system(
rG 0

r ′
− `I

)
v ≡ w

r ′
(mod r)

over Qp[x ]/(r) for some matrix G 0 ∈ Mdy×dy (Qp[x ]) such that the eigenvalues of
rG 0

r ′ are contained in Q ∩ [0, 1) ∩ Zp at every zero of r(x). Therefore, as long as
` ≥ 1 we can solve the system and reduce the pole order at the zeros of r(x).
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p-adic cohomology

Computing the cohomology

In these reductions we have used that [b0
0, . . . , b

0
dy−1] is an integral basis for Q(X )

over Q[x ], otherwise G 0 would not consist of polynomials.

By applying repeatedly, we can can represent the cohomology class of any 1-form
on U by one that is logarithmic at all P ∈ X \ U for which x(P) 6=∞.

We can do something similar at the points P with x(P) =∞ by working with the
integral basis [b∞0 , . . . , b

∞
dy−1] of Q(X ) over Q[1/x ].

Finding a basis for H1
rig(U) is now reduced to finite dimensional linear algebra.

We find 1-forms ω1, . . . , ωκ in Ω1(U) that are a basis for H1
rig(U) such that the

first 2g are a basis for H1
rig(X ).
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p-adic cohomology

Computing matrix of Frobenius

By applying Fp and using the cohomological reductions, we find a matrix
Φ ∈ Mκ×κ(Qp) and functions f1, . . . , fκ ∈ R† such that:

F∗p(ωi ) = dfi +
∑
j

Φijωj

for i = 1, . . . , κ.

Φ is the matrix of Frobenius on H1
rig(U) w.r.t. the basis [ω1, . . . , ωκ].

Before we did not care about f1, . . . , fκ and computed the zeta function of X as
the reverse characteristic polynomial of the matrix Φ.

Now we are going to compute Coleman integrals on X using Φ and f1, . . . , fκ.
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Coleman integrals

Residue disks

There is a specialisation map from X an to X that should be seen as reduction
mod p.

The inverse image of a point on X under this map is called a residue disk and is
isomorphic to the open unit disk |z | < 1.

We call a residue disk bad if it contains a point of X \ U and good if not.

Similarly, we say that a bad residue disk is infinite if it contains a point P with
x(P) =∞ and finite if not.
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Coleman integrals

Tiny integrals

Suppose that P,Q ∈ X (Qp) are points in the same residue disk D and ω ∈ Ω1(U).

For simplicity, assume that ω does not have a pole on D, for example because D
is a good disk.

Then
∫ Q

P
ω can be computed simply by expanding ω in terms of a local coordinate

t on the disk:
ω =

∑
i≥0

ci t
idt

and integrating as usual∫ t(Q)

t(P)

∑
i≥0

ci t
idt =

∑
i≥0

ci
i + 1

(t(Q)i+1 − t(P)i+1).

This is the easy case, no p-adic cohomology is needed.
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ω can be computed simply by expanding ω in terms of a local coordinate

t on the disk:
ω =

∑
i≥0

ci t
idt

and integrating as usual∫ t(Q)

t(P)

∑
i≥0

ci t
idt =

∑
i≥0

ci
i + 1

(t(Q)i+1 − t(P)i+1).

This is the easy case, no p-adic cohomology is needed.
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Coleman integrals

Tiny integrals: precision

Proposition

Suppose that P,Q and ω are accurate to p-adic precision N. If we assume that
ω ∈ Zp[[t]] and truncate it mod tm, then the tiny integral as computed above is
accurate to p-adic precision

min{N,m + 1− blogp(m + 1)c}.

Proof.

Let us denote the i-th term by Ti = ci
i+1 (t(Q)i+1 − t(P)i+1). The effect of the

truncation is to omit the Ti for i ≥ m. However, ordp(t(Q)), ordp(t(P) ≥ 1, so
for i ≥ m we have

ordp(Ti ) ≥ i + 1− blogp(i + 1)c ≥ m + 1− blogp(m + 1)c.

Since t(P), t(Q) are accurate to p-adic precision N, for i < m we have that Ti is
accurate to precision

N + i − blogp(i + 1)c ≥ N.
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Coleman integrals

Good endpoints

Now suppose that P,Q ∈ X (Qp) are points in different good residue disks.

We may assume that P,Q are Teichmueller points (fixed under Fp), because the
integral from a point to the corresponding Teichmueller point is tiny!

Recall that for i = 1, . . . , κ

F∗p(ωi ) = dfi +
∑
j

Φijωj .

Integrating, we find∫ Q

P

ωi =

∫ Fp(Q)

Fp(P)

ωi =

∫ Q

P

F∗p(ωi ) = fi (Q)− fi (P) +
∑
j

Φij

∫ Q

P

ωj .

So we can find the
∫ Q

P
ωi by solving the linear system

(Φ− I )

∫ Q

P

ωi = fi (P)− fi (Q).
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Coleman integrals

Good endpoints: precision

Proposition

Suppose that P,Q ∈ X (Qp) are points lying in good disks, accurate to N digits of
precision, and suppose that the matrix Φ and the functions fi are accurate to N

digits of precision as well. Then the computed values of
∫ Q

P
ωi will be accurate to

N − ordp(det(Φ− I )) digits of precision.

Proof.

The evaluation of the fi at P,Q does not suffer from precision loss, since P,Q lie
in good disks! The matrix inversion loses at most ordp(det(Φ− I )) digits of
precision.

Remark

Note that we can integrate any ω ∈ Ω1(U) using∫ Q

P

ω =

∫ Q

P

(df +
∑
i

ciωi ) = f (Q)− f (P) +
∑
i

ci

∫ Q

P

ωi .
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Coleman integrals

Bad endpoints

Suppose that P ∈ X (Qp) lies in a good disk, but Q ∈ X (Qp) lies in a finite bad
disk D (the case of an infinite bad disk is easier).

Now the problem is that the fi will in general have a pole in D, so that fi (Q) does
not necessarily converge!

However, the fi will converge close enough to ∂D. Therefore, we compute
∫ Q′

P
ωi

for some Q ′ close enough to ∂D. Note that
∫ Q′

Q
ωi is a tiny integral!

How close is close enough?
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Coleman integrals

Bad endpoints: convergence

Proposition

On a finite bad disk, the functions fi converge outside of the closed disk defined
by ordp(r(x)) ≥ 1/p.

Proof.

The part of fi coming from finite reductions is of the form

dy−1∑
j=0

∞∑
k=1

cijk(x)

r(x)k
bj
0,

with the cijk elements of Qp[x ] of degree smaller than deg(r), that satisfy

ordp(cijk) ≥ bk/pc+ 1− blogp(ke0)c

where e0 = max{eP : P bad finite point}. It is therefore clear that the series
converges if ordP(r(x)) < 1/p.
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Coleman integrals

Bad endpoints: precision

Proposition

Suppose that P ∈ X (Qp) is a point lying in a good disk, and Q ∈ X (Qp(p1/m))
for some a point lying in a finite bad disk, both accurate to N digits of precision.
Assume that Φ and the functions fi are accurate to N digits of precision as well.
Denote ε = ordp(r(Q)) and suppose that ε < 1/p. Define a function π on positive
integers by

π(k) = max{N, bk/pc+ 1− blogp(ke0)c},

where e0 = max{eP : P finite bad point }. (Note that π(k)− εk →∞ as

k →∞). Then the computed values of
∫ Q

P
ωi will be accurate to

min
k∈Z>0

{π(k)− kε} − ordp(det(Φ− I )).

digits of precision.
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Examples

Implementation

Work on an implementation in Magma is in progress. This also includes double
integrals, which we have not talked about today.

For now we have restricted to curves with a smooth affine model, for which
W 0 = I . However, soon it should be working in the general case.

Most examples we have tried so far are smooth quartics.

Soon there should be a preprint online with more general examples.

We plan on making the code available, once there is a stable version.
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Examples

Bruin Poonen Stoll

Bruin, Poonen and Stoll (2013) give the example

Q = y3 + (−x2 − 1)y2 − x3y + x3 + 2x2 + x

which has small coefficients and rank 1 (under GRH).

There are 5 finite points

P1 = (0, 0), P2 = (0, 1), P3 = (−3, 4), P4 = (−1, 0), P5 = (−1, 1)

and 3 more at infinity.
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Examples

Some integrals

We computed the integrals at p = 3 of ω1, . . . , ω6 between P1 and P2,P3,P4:(∫ P2

P1

ωi

)
i=1,...,6

= (−808a60 + O(a280), 347a90 + O(a280),−1646a60 + O(a280),

3667a30 + O(a280), 3172a30 + O(a280),−5164a30 + O(a280))(∫ P3

P1

ωi

)
i=1,...,6

= (1690a60 + O(a280), 319a90 + O(a280),−1072a60 + O(a280),

7474a30 + O(a280), 3022a30 + O(a280), 3509a30 + O(a280))(∫ P4

P1

ωi

)
i=1,...,6

= (−55a90 + O(a280),−349a120 + O(a280), 229a90 + O(a280),

−4918a30 + O(a280), 565a90 + O(a280), 8507a30 + O(a280))

where a30 = 3 (a is needed for things to converge in the bad disks).
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Examples

Chabauty

We now compute independent linear combinations ξ1, ξ2 of ω1, ω2, ω3 such that∫ P2

P1

ξi =

∫ P3

P1

ξi =

∫ P4

P1

ξi = 0 for i = 1, 2

and find

ξ1 = (1 + O(38))ω1 + O(310)ω2 + (430 + O(38))ω3

ξ2 = O(38)ω1 + (1 + O(310))ω2 + (−320 · 3 + O(38))ω3.

No we check that ∫ P5

P1

ξ1 =

∫ P5

P1

ξ2 = 0.

So we must be doing something right!
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