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Introduction

Rational points

X/Q a smooth projective curve of genus g > 1.

Given by (singular) plane model f (x , y) = 0.

Theorem (Faltings ’83)

The set X (Q) of rational points on X is finite.

Usually points are easily found by a search (if they exist).

Example (g = 4)

f (x , y) = y 3 − (x5 − 2x4 − 2x3 − 2x2 − 3x)

X (Q) ⊃ {(1,−2), (0, 0), (−1, 0), (3, 0),∞}

Problem

How to prove that these are all points?
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Introduction

Chabauty’s theorem

J will denote the Jacobian variety of X , i.e. divisors of degree 0 modulo
divisors of functions. Note that J is naturally an abelian variety.

Theorem (Mordell-Weil)

J(Q) is a finitely generated abelian group.

Given a point b ∈ X (Q), we get an embedding X (Q)→ J(Q):

P 7→ (P)− (b)

Theorem (Chabauty ’41)

Let r be the rank of J(Q). If r < g then X (Q) is finite.

Coleman: can make this effective using p-adic line integrals.
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Coleman integrals
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Coleman integrals

Coleman integrals

Let:

p a prime at which X has good reduction,

P,Q ∈ X (Qp),

ω a 1-form on XQp (more generally on some wide open of a rigid
analytic space).

In the 80’s Coleman defined path independent line integrals∫ Q

P
ω

which can be extended to integrate over D ∈ J(Qp), where J is the
Jacobian of X (above: D = (Q)− (P)).
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Coleman integrals

Properties

The Coleman integral has the following properties:

1 Linearity:
∫ Q
P (aω1 + bω2) = a

∫ Q
P ω1 + b

∫ Q
P ω2.

2 Additivity in endpoints:
∫ Q
P ω =

∫ R
P ω +

∫ Q
R ω.

3 Change of variables: If V ′ ⊂ X ′ is a wide open subspace of a rigid
analytic space X ′ and φ : V → V ′ a rigid analytic map then∫ Q
P φ∗ω =

∫ φ(Q)
φ(P) ω.

4 Fundamental theorem of calculus:
∫ Q
P df = f (Q)− f (P) for f a rigid

analytic function on V .

A residue disk on XQp is the inverse image under reduction mod p of a
single point. Coleman integrals within a single residue disk are called tiny.
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Coleman integrals

Tiny integrals

Let: P,Q ∈ X (Qp) points in the same residue disk, ω ∈ H0(XQp ,Ω
1).

Then
∫ Q
P ω can be computed by expanding ω in a local coordinate t on

the disk:
ω =

∑
i≥0

ci t
idt

and integrating as usual∫ t(Q)

t(P)

∑
i≥0

ci t
idt =

∑
i≥0

ci
i + 1

(t(Q)i+1 − t(P)i+1).

When P and Q not in the same residue disk, does not work: series do not
converge.

Analytic continuation fails over Qp. Coleman: use Frobenius action on
p-adic cohomology.

Jan Tuitman (KU Leuven) Effective Chabauty and the cursed curve January 19, 2018 8 / 35



Coleman integrals

p-adic cohomology

Can construct p-adic cohomology space H1
rig (XQp):

a vector space over Qp isomorphic to H1
dR(XQp),

with action F∗p of p-th power Frobenius Fp on XFp .

Let U ⊂ X be an open such that X − U is smooth over Zp and
ω1, . . . , ω2g ∈ Ω1(UQp) a basis for H1

dR(XQp).

Then there exist:

a matrix Φ ∈ M2g×2g (Qp),
(overconvergent) functions f1, . . . , f2g on some open of XQp ,

such that

F∗p(ωi ) = dfi +

2g∑
j=1

Φijωj for i = 1, . . . , 2g .

We can take ω1, . . . , ωg to be a basis for H0(XQp ,Ω
1).

Jan Tuitman (KU Leuven) Effective Chabauty and the cursed curve January 19, 2018 9 / 35



Coleman integrals

General integrals

Recall that

F∗p(ωi ) = dfi +

2g∑
j=1

Φijωj for i = 1, . . . , 2g .

Assume that Fp(P) = P and Fp(Q) = Q (Teichmüller points). No loss of
generality, can correct with tiny integrals. Integrating, we find∫ Q

P
ωi =

∫ Fp(Q)

Fp(P)
ωi =

∫ Q

P
F∗p(ωi ) = fi (Q)− fi (P) +

∑
j

Φij

∫ Q

P
ωj .

So we can determine the
∫ Q
P ωi by solving the linear system

(Φ− I )

∫ Q

P
ωi = fi (P)− fi (Q) for i = 1, . . . , 2g .
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Coleman integrals

Implementation

We have developed and implemented (in Magma) algorithm to compute
action of F∗p on Hrig(XQp) for any X for almost all p. Application in mind:
computing zeta function Z (XFp ,T ).

Package is called pcc. Can be found on our website and GitHub. Comes
with Magma since v2.23, commands are: ZetaFunction and LPolynomial.

In joint work with J. Balakrishnan we have extended this to an algorithm
and implementation for computing (single) Coleman integrals on arbitrary
curves.

The package is called Coleman and can again be found on our website and
GitHub.
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Effective Chabauty

Chabauty-Coleman

Assume a point b ∈ X (Q) is known and embed X ↪→ J into its Jacobian
by P 7→ (P)− (b).

Theorem (Chabauty-Coleman)

Let r denote the Mordell-Weil rank of J and suppose that r < g. Then
there exists ω ∈ H0(XQp ,Ω

1) such that
∫ P
b ω = 0 for all P ∈ X (Q).

Sketch of proof.

X (Q) X (Qp)

J(Q) J(Qp) H0(XQp ,Ω
1)∗

D 7→
∫
D

AJb

X (Q) lands in a subspace of H0(XQp ,Ω
1)∗ of dimension at most r .
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Effective Chabauty

Effective Chabauty

The integral
∫ P
b ω can be expanded in a power series with a finite number

of zeros on every residue disk.

This proves Mordell’s conjecture in the case r < g as already noted by
Chabauty.

Since we can compute Coleman integrals, when r < g this gives an
algorithm to find a finite subset

X (Qp)1 ⊂ X (Qp)

which contains X (Q).

We have also implemented a basic version of this algorithm.
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Effective Chabauty

Explicit effective Chabauty

1 Suppose an upper bound R < g is known on the rank r of J.

2 Take as input points P1, . . . ,Pk ∈ X (Q).

3 Determine the subspace S of ω ∈ H0(XQp ,Ω
1) such that∫ Pi

P1

ω = 0 for i = 1, . . . , k.

4 If dim S ≤ g − R then for all ω ∈ S and P ∈ X (Q)∫ P

P1

ω = 0 for i = 1, . . . , k .

5 Expand these conditions in power series and find the candidate points
on every residue disk of XQp .
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Effective Chabauty

Example

Let us return to the example f (x , y) = y 3 − (x5 − 2x4 − 2x3 − 2x2 − 3x).
The Magma function RankBounds() proves that the rank of J is 1. This
uses work of Poonen-Schaefer (’97). Now we use our code:

> load "coleman.m";

> Q:=y^3 - (x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 3*x);

> p:=7;

> N:=15;

> data:=coleman_data(Q,p,N);

> Qpoints:=Q_points(data,1000); // PointSearch

> #vanishing_differentials(Qpoints,data:e:=50);

3

> #effective_chabauty(data,1000:e:=50),#Qpoints;

5 5

This proves that our list of rational points is complete.
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Effective Chabauty

Problems

Does not always work.

Some examples of what can go wrong:

No upper bound on rank r . Assume some conjectures?

(P)− (Q) with P,Q ∈ X (Q) do not generate full rank subgroup of
J(Q). Then dim S ≤ g − R is never satisfied. Use more general
D ∈ J(Q)? Currently, only points in X (Qp) allowed.

Too many points found: X (Qp)1 strictly larger than X (Q). Use other
prime p, combine with Mordell-Weil sieving?

Rank r known but r ≥ g . Method as explained so far breaks down.
However, recently some succes with non-abelian effective Chabauty.

What is non-abelian effective Chabauty? Let’s see an example.
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The cursed curve

Serre uniformity

If E/Q elliptic curve and ` prime number then we get a residual Galois
representation:

ρE ,` : Gal(Q/Q)→ Aut(E [`]) ∼= Gl2(F`).

Theorem (Serre ‘72)

If E does not have complex multiplication (CM) then ρE ,` is surjective for
all primes `� 0.

Problem (Serre)

Is the same true uniformly in E , i.e. is there a constant `0 such that ρE ,` is
surjective for all elliptic curves E/Q without CM and all primes ` > `0?

When ρE ,` is not surjective, its image its contained in 1) a Borel subgroup,
2) an exceptional subgroup or 3) the normaliser of a (split or non-split)
Cartan subgroup of Gl2(F`).
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The cursed curve

The cursed curve

Split Cartan modular curve of level 13:

Xs(13) = X (13)/Cs(13)+

where Cs(13)+ is the normaliser of a split Cartan subgroup of GL2(F13).
Points of Xs(13) are elliptic curves E with Im(ρE ,13) ⊂ Cs(13)+.

Baran ’14 found a defining equation, which we can rewrite as

y 4+5x4−6x2y 2+6x3+26x2y +10xy 2−10y 3−32x2−40xy +24y 2+32x−16y = 0.

The closure in P2
Q is a smooth plane quartic, so g = 3. Jacobian is simple

and by known instance of BSD and computation one finds r = 3.

One easily finds the following seven points (in homogeneous coordinates
(X : Y : Z ) with x = X/Z , y = Y /Z ):

{(1 : 1 : 1), (1 : 1 : 2), (0, 0, 1), (−3, 3, 2), (1, 1, 0), (0, 2, 1), (−1, 1, 0)}.
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The cursed curve

Rational points

Theorem (J. Balakrishnan, N. Dogra, S. Müller, J. Tuitman, J. Vonk ‘17)

The rational points on Xs(13) are the seven known ones (six CM points
and one cusp).

Preprint: https://arxiv.org/abs/1711.05846.

Corollary

There does not exist an elliptic curve E/Q without CM such that the
image of its mod ` Galois representation is contained in the normalizer of
a split Cartan subgroup of GL2(F`) for ` = 13.

For all ` 6= 13 it was already known (Bilu-Parent-Rebolledo ’11) whether
such elliptic curves exist or not (for ` ≤ 7 yes, otherwise no). For Borel
and exceptional cases answer known by Mazur ’78 and Serre ’72. Non-split
Cartan case is (mostly) open!
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Non-abelian Chabauty on Xs (13)

Non-abelian Chabauty

For X = Xs(13), the map D →
∫
D gives an isomorphism

J(Q)⊗Qp → H0(XQp ,Ω
1)∗.

Therefore, we cannot find the global points among the local ones using
linear relations in the Abel-Jacobi map.

The idea of Kim’s non-abelian Chabauty program is to refine the
Abel-Jacobi map, by replacing linear relations by higher degree ones.

X (Qp) ⊃ X (Qp)1 ⊃ X (Qp)2 ⊃ . . . ⊃ X (Q)

For Xs(13) it turns out that X (Qp)2 = X (Q) for p = 17.

We always assume that X has potentially good reduction everywhere,
which is the case for Xs(13).
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Non-abelian Chabauty on Xs (13)

The general idea (I)

The Chabauty diagram we saw before can be extended as follows:

X (Q) X (Qp)

J(Q) J(Qp) H0(XQp ,Ω
1)∗

H1
f (GT ,V ) H1

f (Gp,V ) VdR/Fil0

κ κp '

D 7→
∫
D

locp '

AJb

where:

T0 the set of primes of bad reduction and T = T0 ∪ {p},
Gp = Gal(Qp/Qp) and GT the maximal quotient of Gal(Q/Q)
unramified outside T ,

V = H1
ét(X ,Qp)∗, VdR = H1

dR(XQp)∗, Fil = (dual) Hodge filtration,

H1
f and κ, κp: Bloch Kato Selmer groups and Kummer maps.
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Non-abelian Chabauty on Xs (13)

The general idea (II)

Note that V = H1
ét(X ,Qp)∗ is the maximal abelian quotient of the Qp

étale fundamental group πdR1 (X , b).

M. Kim proposes to cut out the middle row in the diagram and replace V
by the maximal n-unipotent quotients Un of πdR1 (X , b):

X (Q) X (Qp)

H1
f (GT ,U

ét
n ) H1

f (Gp,U
ét
n ) UdR

n /Fil0.

j ét
n j ét

n,p

locn,p '

jdR
n

He defines X (Qp)n = (j ét
n,p)−1(locn,p(H1

f (GT ,U
ét
n ))), so that:

X (Qp) ⊃ X (Qp)1 ⊃ X (Qp)2 ⊃ . . . ⊃ X (Q)

H1
f (GT ,U

ét
n ) and H1

f (Gp,U
ét
n ) are naturally schemes. If locn,p is not

dominant then X (Qp)n is finite (analog to r < g for n = 1)! We will only
use n = 2 and take a further quotient Uét

Z of Uét
2 .
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Non-abelian Chabauty on Xs (13)

Quadratic Chabauty functions

Fix b ∈ X (Q). We want to find quadratic Chabauty functions
θ : X (Qp)→ Qp such that:

1 On each residue disk, the map

(AJb, θ) : X (Qp)→ H0(XQp ,Ω
1)∗ ×Qp

has Zariski dense image and is given by power series.
2 There exist

an endomorphism E of H0(XQp ,Ω
1)∗,

a functional c ∈ H0(XQp ,Ω
1)∗,

a bilinear form B : H0(XQp ,Ω
1)∗ ⊗ H0(XQp ,Ω

1)∗ → Qp,

such that, for all x ∈ X (Q):

θ(x) = B (AJb(x),E (AJb(x)) + c) .
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Non-abelian Chabauty on Xs (13)

Nice correspondences

We will construct θ from a nice correspondence.

Let Z be a correspondence on X , i.e. a divisor on X × X .

We denote:

τ the involution (x1, x2) 7→ (x2, x1) on X × X ,

π1, π2 : X × X → X the canonical projections.

Z is symmetric if there exist Z1,Z2 ∈ Pic(X ) such that

τ∗Z = Z + π∗1(Z1) + π∗2(Z2).

Induces endomorphism ξZ of H1
dR(X ) and class in H1

dR(XQp)⊗ H1
dR(XQp).

Z is nice if nontrivial, symmetric and Tr(ξZ ) = 0.
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Non-abelian Chabauty on Xs (13)

Unipotent overconvergent F -isocrystal

Let Y = X − x−1(∞). Take ~ω = {ω1, . . . ω6} a basis of VdR = H1
dR(X ).

Put the connection ∇ = d + Λ on AZ (b) = OY ⊕O⊕6
Y ⊕OY :

Λ = −

0 0 0
~ω 0 0
η ~ωtZ 0


where η has to satisfy: 1) it is logarithmic 2) ∇ extends to a holomorphic
connection on X .

By a crystalline comparison theorem AZ (b) admits a Frobenius structure,
i.e. an isomorphism

F : F∗p AZ (b)→ AZ (b)

horizontal w.r.t ∇, turning (AZ (b),∇) into a unipotent overconvergent
F -isocrystal.

Jan Tuitman (KU Leuven) Effective Chabauty and the cursed curve January 19, 2018 28 / 35



Non-abelian Chabauty on Xs (13)

Frobenius structure

Let b̃ be the Teichmüller lift of b, i.e. b̃ ≡ b mod p and Fp(b̃) = b̃. The
inverse of the matrix of the Frobenius structure F is given by

G =

1 0 0
~f Φ 0
h ~g t p

 such that dG = G Λ− F∗p(Λ)G .

The differential equation is equivalent to:

F∗p ~ω = d~f + Φ~ω f (b̃) = 0

d~g t = d~f tZ Φ

dh = ~ωtΦtZ~f + d~f tZ~f − ~g t~ω + F∗p η − pη h(b̃) = 0

and can be solved using (an adaptation of) our algorithms for computing
Coleman integrals!
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Non-abelian Chabauty on Xs (13)

Construct θZ

For any x ∈ X (Qp) can pull back AZ (b):

AZ (b, x) = x∗(AZ (b)).

This is a mixed extension of filtered φ-modules in the sense of p-adic
Hodge theory. Note that the action of φ is given by

Tx̃ ,x ◦ G−1(x̃) ◦ Tb,b̃

where Tx ,y denotes parallel transport from x to y .

For such objects, Nekovar defines a p-adic height function hp(). We set

θZ (x) = hp(AZ (b, x)).

For any nice correspondence Z we have that θZ is a quadratic Chabauty
function (with E = ξZ , c is explicit as well).
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Non-abelian Chabauty on Xs (13)

Computing hp (I)

Let s1, s2 : VdR → VdR be projections splitting the (dual) Hodge filtration
on VdR where s1 corresponds to VdR/Fil0 and s2 to Fil0.

Moreover, let
s0 : Qp ⊕ VdR ⊕Qp(1)

∼−→ AZ (b, x).

be a splitting of vector spaces and choose further splittings:

sφ : Qp ⊕ VdR ⊕Qp(1)
∼−→ AZ (b, x),

sFil : Qp ⊕ VdR ⊕Qp(1)
∼−→ AZ (b, x),

where sφ is Frobenius equivariant and sFil respects the filtrations.
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Non-abelian Chabauty on Xs (13)

Computing hp (II)

Suppose that

s−1
0 ◦ sφ =

 1 0 0
αφ 1 0
γφ βᵀ

φ 1

 s−1
0 ◦ sFil =

 1 0 0
0 1 0
γFil βᵀ

Fil 1

 .

Then we have the following very concrete description of θZ (x):

θZ (x) = hp(AZ (b, x)) = γφ − γFil − βᵀ
φ · s1(αφ)− βᵀ

Fil · s2(αφ).

So computing θZ (x) is reduced to (a lot of rather messy) linear algebra.

On every residue disk θZ (x) is given by a power series.
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Non-abelian Chabauty on Xs (13)

The complete computation

Take p = 17.

1) For each Z :

Determine endomorphism E and functional c .

Compute a 1-form η such that Λ extends to all of X .

On each residue disk compute power series θ(x), by determining
Hodge data βFil , γFil and Frobenius data αφ, βφ, γφ.

Use 4 known points on the curve to fit the bilinear form BZ such that:

θZ (x) = BZ (AJb(x),E (AJb(x)) + c) (∗)

for all x ∈ X (Q).

2) On each residue disk find the common solutions to (∗) for Z = Z1,Z2.
Check we do not get any new (candidate) points.
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Non-abelian Chabauty on Xs (13)

Some computational details

f (x, y) = y4 + 5x4 − 6x2y2 + 6x3 + 26x2y + 10xy2 − 10y3 − 32x2 − 40xy + 24y2 + 32x − 16y = 0.

~ω :=



1
x
y

−160x4/3 + 736x3/3 − 16x2y/3 + 436x2/3 − 440xy/3 + 68y2/3

−80x3/3 + 44x2 − 40xy/3 + 68y2/3 − 32

−16x2y + 28x2 + 72xy − 4y2 − 160x/3 + 272/3


dx(
∂f
∂y

)

We use the correspondences Z with ξZ = 6aq − Tr(aq)Id for q = 7, 11:

Z1 =


0 112 −656 −6 6 6

−112 0 −2576 15 9 27
656 2576 0 3 3 −3

6 −15 −3 0 0 0
−6 −9 −3 0 0 0
−6 −27 3 0 0 0

 Z2 =


0 −976 −1104 10 −6 18

976 0 −816 −3 1 3
1104 816 0 −3 3 −11
−10 3 3 0 0 0

6 −1 −3 0 0 0
−18 −3 11 0 0 0
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Non-abelian Chabauty on Xs (13)

Plans for the future

In increasing order of difficulty:

Combine our implementation of (classical) Chabauty with some
Mordell Weil sieving and/or descent.

Develop and implement algorithms to compute double (perhaps
triple) Coleman integrals on general curves.

Write code to do the quadratic Chabauty computation for Xs(13) in
an automated way so we can do other examples (which is not the
case right now).

Work out other examples, perhaps some Xns(`)?

What about higher Chabauty, working with (quotients of) U3 for
example. How explicit can this be made?
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