
Examples Coleman

Jennifer Balakrishnan and Jan Tuitman

December 4, 2017

Abstract

This text is about the Coleman Magma library for computing Coleman
integrals on arbitrary smooth projective curves building on the algorithm
from [3, 4]. It serves both as as collection of examples and as a user’s
guide.

1 An elliptic curve

The code is loaded as follows:

load "coleman.m";

A curve X is specified by a polynomial f ∈ Z[x][y] monic in y defining a
(possibly singular) plane model of the curve. Moreover, the user has to
choose a prime number p and an initial p-adic precision N . For example:

>f:=y^2-(x^3-10*x+9);

>p:=5;

>N:=10;

>data:=coleman_data(f,p,N);

Now data is a record that contains a lot of information useful for Coleman
integration. For example:

> data‘W0;

[1 0]

[0 1]

> data‘Winf;

[ 1 0]

[ 0 1/x^2]

means that b0 = [1, y] and b∞ = [1, y/x2] are integral bases for the function
field of X over Q[x] and Q[1/x], respectively. Note that the i-th row
contains the coefficients of the i-th basis vector with respect to [1, y]. The
b0i should be thought of as coordinates on the affine chart x 6= ∞ of X
and the b∞i as coordinates on the affine chart x 6= 0 of X. Moreover,

> data‘r;

x^3 - 10*x + 9

is the polynomial the zeros of which we have taken out of X (along with all
points at x = ∞) to represent the De Rham cohomology space H1

dR(X),
and
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> data‘basis;

[

(0 1),

(0 x)

]

means that a basis for H1
dR(X) is given by [ω1, ω2] where:

ω1 = (0 · b01 + 1 · b02)dx/z,

ω2 = (0 · b01 + x · b02)dx/z,

and z is r(x) divided by its leading coefficient. Since in this case we have
z = r(x) = y2 and b0 = [1, y], this means that [ω1, ω2] = [dx/y, dx/y2],
which is the well known basis from e.g. Kedlaya’s algorithm. Finally,

> data‘F;

[ 3129195 -3784615]

[ 3553247 -3129195]

is the matrix of p-th power Frobenius on H1
dR(X) to p-adic precision N

with respect to this basis.

Now we want to define some points. For points that do not lie in a
bad disk, i.e. the residue disk modulo p of a point taken out of X, one
can just specify their x and y coordinates:

> P1:=set_point(0,3,data);

> P2:=set_point(8,21,data);

When W0 is not the identity and the point lies in a bad residue disk, one
has to specify the values of x and the b0i if the point is finite and the values
of 1/x and the b∞i if the point lies at infinity. For example:

> P3:=set_bad_point(1,[1,0],false,data);

> P4:=set_bad_point(0,[1,0],true,data);

means that P3 is a point which is not infinite and therefore given by
x = 1, [1, y] = [1, 0] while P4 is infinite and therefore given by 1/x =
0, [1, y/x2] = [1, 0]. Note that P3 could also have been defined by

> P3:=set_point(1,0,data);

since W0 is the identity matrix.

Let us now compute some integrals. To compute the integrals of ω1, ω2

from P1 to P2:

> coleman_integrals_on_basis(P1,P2,data);

(O(5^9) 6 + O(5^9))

9

Here the 9 means that the results are provably correct to absolute p-adic
precision 9, i.e. in the process of computing these integrals we may have
lost 1 digit of p-adic precision.

If an integral involves a point in a bad disk like P3 or P4, then the
Frobenius structure only converges near the boundary of this disk. To get
close enough to the boundary of the disk, in the computation we have to
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consider points over totally ramified extensions Qp(p1/e) for some large
enough integer e. We have good bounds for how large e should be, but
it is not so clear what the most efficient value is in practice. Therefore,
for now the value of e is not chosen by the code but specified by the user.
Note that this does not affect provable correctness of the result, since if e
is too small no result or a result with no precision will be returned.

>coleman_integrals_on_basis(P1,P3,data:e:=100);

(-38429*5^2 + O(5^9) 89903*5 + O(5^9))

9

> coleman_integrals_on_basis(P2,P4,data:e:=100);

(-38429*5^2 + O(5^9) 449509 + O(5^9))

9

2 A plane quartic curve of rank 0

This time we take the plane quartic curve X from [1, Proposition 12.16]
which we dehomogenise with respect to z. We again take p = 5 and initial
p-adic precision N = 10.

> f:=y^3 + (-x^2 - x)*y^2 + x^3*y - x^2 + x;

> p:=5;

> N:=10;

> data:=coleman_data(f,p,N);

This time we have:

> data‘W0;

[1 0 0]

[0 1 0]

[0 0 1]

> data‘Winf;

[ 1 0 0]

[ 0 1/x^2 0]

[ 0 -1/x 1/x^3]

which means that b0 is given by [1, y, y2] (i.e. there are no singularities in
the affine x, y plane) and b∞ is given by [1, y/x2,−y/x + y2/x3].

There are 3 finite points:

> P1:=set_point(1,1,data);

> P2:=set_point(0,0,data);

> P3:=set_point(1,0,data);

and 3 infinite ones:

> P4:=set_bad_point(0,[1,0,-1],true,data);

> P5:=set_bad_point(0,[1,1,0],true,data);

> P6:=set_bad_point(0,[1,0,0],true,data);

The Jacobian of X has rank zero, so all divisors Pi−Pj are torsion. The
basis [ω1, . . . , ω6] for H1

dR(X) is computed in such a way that ω1, ω2, ω3

are regular 1-forms. Note that the integral of a regular 1-form over a
torsion divisor vanishes. We can check this as follows:
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> coleman_integrals_on_basis(P1,P2,data:e:=100);

(O(5^9) O(5^9) O(5^9) 306527 + O(5^9) -574266 + O(5^9) -919117 + O(5^9))

9

> coleman_integrals_on_basis(P1,P3,data:e:=100);

(O(5^9) O(5^9) O(5^9) 919669 + O(5^9) -746256 + O(5^9) 34467*5 + O(5^9))

9

> coleman_integrals_on_basis(P1,P4,data:e:=100);

(O(5^9) O(5^9) O(5^9) 497571 + O(5^9) 287133 + O(5^9) -517003 + O(5^9))

9

> coleman_integrals_on_basis(P1,P5,data:e:=100);

(O(5^9) O(5^9) O(5^9) 383416 + O(5^9) 747277 + O(5^9) -172334 + O(5^9))

9

> coleman_integrals_on_basis(P1,P6,data:e:=100);

(O(5^9) O(5^9) O(5^9) 38594 + O(5^9) -804083 + O(5^9) -114889 + O(5^9))

9

3 The modular curve X0(44)

So far we have only seen examples for which the plane model did not have
any singularities in the affine x, y plane, i.e. W0 was always the identity
matrix. However, our algorithm and implementation can be applied in
complete generality. We take a defining equation for X = X0(44) from [5]
and work with the prime p = 7 this time (for p = 5 our good reduction
condition is not satisfied).

> f:=y^5+12*x^2*y^3-14*x^2*y^2+(13*x^4+6*x^2)*y-(11*x^6+6*x^4+x^2);

> p:=7;

> N:=10;

> data:=coleman_data(f,p,N);

Now the integral bases (i.e. the coordinates on X) are a lot more
complicated:

> data‘W0;

[ 1 0 0 0 0]

[ 0 1 0 0 0]

[ 0 0 1 0 0]

[ 0 0 0 1/x 0]

[ -10*x^3/(x^4 + 6*x^2 + 1) (-6*x^3 - 13*x)/(x^4 + 6*x^2 + 1) (x^3 + 12*x)/(x^4 + 6*x^2 + 1) -x/(x^4 + 6*x^2 + 1) 1/(x^5 + 6*x^3 + x)]

> data‘Winf;

[ 1 0 0 0 0]

[ 0 1/x^2 0 0 0]

[ 0 0 1/x^3 0 0]

[ 0 0 0 1/x^4 0]

[ -10*x^3/(x^4 + 6*x^2 + 1) (23*x^2 + 6)/(x^5 + 6*x^3 + x) (6*x^2 - 1)/(x^5 + 6*x^3 + x) (6*x^2 + 1)/(x^7 + 6*x^5 + x^3) 1/(x^5 + 6*x^3 + x)]

In particular W0 is not the identity, so the plane model has sin-
gularities at the affine x, y plane. We start by finding a couple of
obvious points. First a finite point that does not lie in a bad disk:

> P1:=set_point(1,1,data);

then a finite point which does lie in a bad disk (lying over a singu-
larity of the plane model):

> P2:=set_bad_point(0,[1,0,0,0,0],false,data);

and finally a point in a infinite disk:
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> P3:=set_bad_point(0,[1,0,0,0,0],true,data);

It turns out that P1-P2 and P1-P3 are torsion, so the integrals
of all regular 1-forms over these divisors vanish. We can check this
as follows:

> coleman_integrals_on_basis(P1,P2,data:e:=100);

(O(7^5) O(7^5) O(7^5) O(7^5) 6775 + O(7^5) -14701*7^-1 + O(7^5)

3239 + O(7^5) 41632*7^-1 + O(7^5))

5

> coleman_integrals_on_basis(P1,P3,data:e:=100);

(O(7^7) O(7^7) O(7^7) O(7^7) -329870 + O(7^7) 2808875*7^-1 + O(7^7)

-38631 + O(7^7) -76017*7^-1 + O(7^7))

7

4 A superelliptic curve

We now consider the curve y3 = x5 − 2x4 − 2x3 − 2x2 − 3x. Using
work of Poonen and Schaefer implemented by Creutz, Magma can
show that the rank of the Jacobian of this curve is equal to 1:

> Qx<x>:=PolynomialRing(RationalField());

> RankBounds(x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 3*x,3);

1 1

We take p = 7 and initial precision N = 20:

> load "coleman.m";

> Q:=y^3 - (x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 3*x);

> p:=7;

> N:=20;

> data:=coleman_data(Q,p,N);

There are 5 obvious rational points on the curve:

> P1:=set_point(1,-2,data);

> P2:=set_point(0,0,data);

> P3:=set_point(-1,0,data);

> P4:=set_point(3,0,data);

> P5:=set_bad_point(0,[1,0,0],true,data);

We now compute some integrals:

IP1P2,N2:=coleman_integrals_on_basis(P1,P2,data:e:=50);

IP1P3,N3:=coleman_integrals_on_basis(P1,P3,data:e:=50);

IP1P4,N4:=coleman_integrals_on_basis(P1,P4,data:e:=50);

IP1P5,N5:=coleman_integrals_on_basis(P1,P5,data:e:=50);

The integrals from P1 to P2 do not (all) vanish:
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> IP1P2;

(12586493*7 + O(7^10) 19221514*7 + O(7^10) -19207436*7 + O(7^10)

-10636635*7 + O(7^10) 128831118 + O(7^10) 67444962 + O(7^10)

-23020322 + O(7^10) 401602170*7^-1 + O(7^10))

> N2;

10

Since the rank of the curve is 1, the class of P1 − P2 generates a
finite index subgroup of the Mordell Weil group of the Jacobian. We
can find the annihilating differentials by setting the integrals from
P1 to P2 to zero:

> K:=pAdicField(p,Minimum([N2,N3,N4,N5]));

> M:=Matrix(4,1,Vector(K,[IP1P2[i]: i in [1..4]]));

> v,_:= Kernel(M);

> v1:=v.1;

> v2:=v.2;

> v3:=v.3;

> v1;

(1 + O(7^9) O(7^9) O(7^9) -18106419 + O(7^9))

> v2;

(O(7^9) 1 + O(7^9) O(7^9) 12452015 + O(7^9))

> v3;

(O(7^9) O(7^9) 1 + O(7^9) 8834289 + O(7^9))

Note that v1,v2,v3 are vectors with respect to our chosen basis
ω1, . . . , ωg of the regular 1-forms. We can now check that the integral
of the 1-form corresponding to v1 vanishes between all of the points
P1, . . . , P5:

> DotProduct(v1,Vector(K,[IP1P3[i]: i in [1..4]]));

> DotProduct(v1,Vector(K,[IP1P4[i]: i in [1..4]]));

> DotProduct(v1,Vector(K,[IP1P5[i]: i in [1..4]]));

O(7^10)

O(7^10)

O(7^10)

and similarly for v1,v2.
We can also look for the rational points up to height 1000 and

then compute the 1-forms that vanish on the differences of these
points as well as their common zeros automatically:

> L,v:=effective_chabauty(data:bound:=1000,e:=50);

This way we find the annihilating differentials:

> v;

[

[ 1 + O(7^10), O(7^10), O(7^10), 22247188 + O(7^10) ],

[ O(7^10), 1 + O(7^10), O(7^10), -27901592 + O(7^10) ],

[ O(7^10), O(7^10), 1 + O(7^10), -71872925 + O(7^10) ]

]
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and a list of candidate points:

> L;

[

rec<recformat<x, b, inf, xt, bt, index> |

x := O(7^20),

b := [ 1 + O(7^20), O(7^8), O(7^16) ],

inf := true>,

rec<recformat<x, b, inf, xt, bt, index> |

x := O(7^20),

b := [ 1 + O(7^20), O(7^9), O(7^18) ],

inf := false>,

rec<recformat<x, b, inf, xt, bt, index> |

x := 3 + O(7^20),

b := [ 1 + O(7^20), O(7^9), O(7^18) ],

inf := false>,

rec<recformat<x, b, inf, xt, bt, index> |

x := -1 + O(7^20),

b := [ 1 + O(7^20), O(7^9), O(7^18) ],

inf := false>,

rec<recformat<x, b, inf, xt, bt, index> |

x := 1 + O(7^9),

b := [ 1 + O(7^20), -2 + O(7^9), 4 + O(7^9) ],

inf := false>

]

Since there are only 5 candidate points and we have already found
5 points P1, . . . , P5 our list is complete!

5 Poonen-Schaefer-Stoll

In [2] Poonen, Schaefer and Stoll want to find the rational points
on 10 plane quartics C1, . . . , C10. They first determine the ranks
of these curves by descent and then find the rational points by a
combination of effective Chabauty and Mordell-Weil sieving. Our al-
gorithms can do the effective Chabauty part automatically, which al-
ready allows one to find the rational points on C1, C2, C3, C8, C9, C10.
For the other curves one needs some Mordell-Weil sieving to rule out
candidate points which do not come from rational points.

Let us try the curve C1. We take p = 5 and initial precision
N = 15:

> load "coleman.m";

> Q:=6*x^3*y+y^3+x;

> p:=5;

> N:=15;

> data:=coleman_data(Q,p,N);
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We can search for the rational points up to height 104 as follows:

> Qpoints:=Q_points(data,10^4);

> Qpoints;

[

rec<recformat<x, b, inf, xt, bt, index> |

x := 0,

b := [ 1 + O(5^15), 0, 0 ],

inf := false>,

rec<recformat<x, b, inf, xt, bt, index> |

x := -15258789062 + O(5^15),

b := [ 1 + O(5^15), 15258789062 + O(5^15), -7629394531 + O(5^15) ],

inf := false>,

rec<recformat<x, b, inf, xt, bt, index> |

x := 0,

b := [ 1 + O(5^15), 0, 0 ],

inf := true>,

rec<recformat<x, b, inf, xt, bt, index> |

x := 0,

b := [ 1 + O(5^15), 0, -6 + O(5^15) ],

inf := true>

]

This gives 2 finite points and 2 infinite ones. Now we compute the
annihilating differentials and candidate points:

L,v:=effective_chabauty(data:Qpoints:=Qpoints,e:=25);

The annihilating differentials are

> v;

[

[ 1 + O(5^5), O(5^5), -868 + O(5^5) ],

[ O(5^5), 1 + O(5^5), 16 + O(5^5) ]

]

and the candidate points are

> L;

[

rec<recformat<x, b, inf, xt, bt, index> |

x := O(5^4),

b := [ 1 + O(5^15), O(5^15), O(5^15) ],

inf := true>,

rec<recformat<x, b, inf, xt, bt, index> |

x := O(5^8),

b := [ 1 + O(5^15), O(5^4), -6 + O(5^15) ],

inf := true>,

rec<recformat<x, b, inf, xt, bt, index> |

x := O(5^9),

b := [ 1 + O(5^15), O(5^3), O(5^6) ],
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inf := false>,

rec<recformat<x, b, inf, xt, bt, index> |

x := -312 + O(5^4),

b := [ 1 + O(5^15), 1562 + O(5^5), -781 + O(5^5) ],

inf := false>

]

Since there are only 4 candidate points and we have already found 4
points our list is complete! Details for the other curves can be found
in ./examples/pss.m.

6 Conclusion

The code is still very much work in progress. For example, double
integrals and related functionality will be added in the near future.
Please send comments, suggestions and bugs to jan.tuitman@kuleuven.be.
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